Lineage-Specific Rewiring of Core Pathways Predating Innovation of Legume Nodules Shapes Symbiotic Efficiency

Wen-Jing Cui, a,b Biliang Zhang, a,b Ran Zhao, a,b Li-Xue Liu, a,b Jian Jiao, a,b Ziding Zhang, a Chang-Fu Tian a,b

State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
MOA Key Laboratory of Soil Microbiology and Rhizobium Research Center, China Agricultural University, Beijing, China

Wen-Jing Cui and Biliang Zhang contributed equally to this work. Author order was determined by their relative contribution to the framework of this study.

ABSTRACT The interkingdom coevolution innovated the rhizobium-legume symbiosis. The application of this nitrogen-fixing system in sustainable agriculture is usually impeded by incompatible interactions between partners. However, the progressive evolution of rhizobium-legume compatibility remains elusive. In this work, deletions of rhcV encoding a structural component of the type three secretion system allow related Sinorhizobium strains to nodulate a previously incompatible soybean cultivar (Glycine max). These rhcV mutants show low to medium to high symbiotic efficiency on the same cultivated soybean while being indistinguishable on wild soybean plants (Glycine soja). The dual pantranscriptomics reveals nodule-specific activation of core symbiosis genes of Sinorhizobium and Glycine genes associated with genome duplication events along the chronogram. Unexpectedly, symbiotic efficiency is in line with lineage-dependent transcriptional profiles of core pathways which predate the diversification of Fabaceae and Sinorhizobium. This is supported by further physiological and biochemical experiments. Particularly, low-efficiency nodules show disordered antioxidant activity and low-energy status, which restrict nitrogen fixation activity. Collectively, the ancient core pathways play a crucial role in optimizing the function of later-evolved mutualistic arsenals in the rhizobium-legume coevolution.

IMPORTANCE Significant roles of complex extracellular microbiota in environmental adaptation of eukaryotes in ever-changing circumstances have been revealed. Given the intracellular infection ability, facultative endosymbionts can be considered pioneers within complex extracellular microbiota and are ideal organisms for understanding the early stage of interkingdom adaptation. This work reveals that the later innovation of key symbiotic arsenals and the lineage-specific network rewiring in ancient core pathways, predating the divergence of legumes and rhizobia, underlie the progressive evolution of rhizobium-legume compatibility. This insight not only is significant for improving the application benefits of rhizobial inoculants in sustainable agriculture but also advances our general understanding of the interkingdom coevolution which is theoretically explored by all host-microbiota interactions.

KEYWORDS adaptation, immunity, mutualism, pangenome, legume

Despite significant roles of complex extracellular microbiota in environmental adaptation of eukaryotes in ever-changing circumstances (1, 2), rare microorganisms are indispensable for eukaryotes and vertically transmitted from parent to offspring (3, 4). Facultative intracellular microsymbionts are not strictly associated with their hosts but may confer adaptive benefits to hosts under particular conditions (5). Given the intracellular infection ability, facultative endosymbionts can be considered pioneers within complex extracellular microbiota and are ideal organisms for understanding the early stage of interkingdom adaptation.
Among diverse soil bacteria, more than 200 rhizobial species belonging to 18 genera of proteobacteria can induce and intracellularly infect nodules on diverse legumes (6). This is largely explained by the horizontal transfer of nodulation and nitrogen fixation genes among soil bacteria and subsequent recruitment of lineage-specific accessory genes (7–10). Despite the great diversity of rhizobia in the rhizosphere (11–13), the majority of nodules were individually infected by a single clone, a phenomenon called competitive nodulation (14–17). In most cases, legume roots exude flavonoids which specifically interact with a rhizobial transcriptional factor, NodD, to activate the expression of nodulation genes directing the synthesis of Nod factors (18). Specific perception of Nod factors by host receptors activates cascades of signal transduction and subsequent initiation of root hair curling, infection thread formation, and nodule organogenesis (19). The uptake of rhizobia into nodule cells leads to formation of symbiosome, consisting of differentiated rhizobial cell(s) called bacteroids which are surrounded by a host-derived membrane (20). Mature bacteroids are nongrowing and can reduce dinitrogen into ammonium that is exchanged for carbon and other nutrients from host cells (21–23), showing organelle-like features (23, 24). Great variations in nodulation and nitrogen fixation efficiency are commonly observed in agriculture practices (25). However, very few efforts have been undertaken to understand mechanisms underlying these variations (26–30).

Sinorhizobium strains are characterized by their multipartite genomes and are intensively studied as model facultative microsymbionts in mutualistic interactions and adaptive evolution of pangenome (23, 31–34). Diverse related *Sinorhizobium* strains have been isolated from soybean nodules in fields of alkaline-saline soils (11, 35, 36) and harbor an open pangenome (10). These strains exhibit notable variations in symbiotic compatibility (29), despite their conserved composition of Nod factors (37). We have recently discovered fast adaptive evolution of narrow-host-range strains into microsymbionts of previously incompatible soybean cultivars (29), and this process is efficiently mediated by parallel transpositions of insertion sequences into the T3SS (type three secretion system) gene cluster composed of genes encoding structural components of the T3SS (e.g., *rhcV*), the effector protein NopP, and the positive transcriptional regulator TtsI (29). Despite their improved nodulation ability, these newly evolved facultative microsymbionts differ in their symbiotic efficiency (29). This highlights a progressive evolution of *Sinorhizobium* compatibility with soybeans, though mechanisms underlying their variation of symbiotic efficiency remain unknown.

To gain more evolutionary insights into this progressive interkingdom adaptation phenomenon, comparative transcriptomic analyses of symbiotic partners in soybean nodules were performed in a pangenome context, i.e., dual pantranscriptomics. To this end, we constructed *rhcV* mutants of five related *Sinorhizobium* strains including *Sinorhizobium fredii* CCBAU45436 (SF4), CCBAU25509 (SF2), and CCBAU83666 (SF8), *Sinorhizobium* sp. III CCBAU05631 (SS1), and *Sinorhizobium sojae* CCBAU05684 (SJ4). These *rhcV* mutants exhibited contrasting symbiotic performance on a test soybean cultivar (*Glycine max* cv. JD17) while being equally effective on a wild soybean accession (*Glycine soja* WSD). The dual transcriptome sequencing (RNA-seq) study in a pangenome context was used to analyze transcriptional profiles of core and accessory genes from both rhizobia and host cells in nodule samples. Active symbiotic roles of *Sinorhizobium* core symbiosis genes and host duplicated genes associated with key evolutionary events in the Fabaceae family were revealed. The symbiotic efficiency was, however, associated with lineage-specific rewiring patterns of core pathways predating the diversification of Fabaceae or *Sinorhizobium*. Core processes associated with these transcriptional profiles were further verified by physiological and biochemical experiments. Novel insights were obtained for the progressive evolution of symbiotic compatibility between legume hosts and their facultative microsymbionts, particularly highlighting a previously unknown mechanism mediated by lineage-specific rewiring of ancient core pathways.
RESULTS AND DISCUSSION

Bypassing standing variation of key symbiotic arsenals led to improved compatibility with lineage-dependent symbiotic efficiency. Independent studies proposed a similar divergence time for Sinorhizobium-Rhizobium, as late as 203 million years ago (MYA) (38) or 201 MYA (39, 40), which is much earlier than 60 MYA, when legume (Fabaceae) evolved (41). With 203 to 336 MYA as a calibration point for the Sinorhizobium-Rhizobium split (38), the divergence between Sinorhizobium strains isolated from soybean nodules and those from Medicago nodules was estimated to take place 106 MYA (Fig. 1A), based on four housekeeping genes of strictly vertical evolutionary history in rhizobia (10, 42). A key difference between Glycine and Medicago microsymbionts is the presence of a functional T3SS in the former strains (Fig. 1B). In this work, the rhcV gene encoding an essential structural component of T3SS (43) (Fig. 1B) was deleted in a broad-host-range strain, SF4, and four narrow-host-range strains, SF2, SF8, SS1, and SJ4 (29, 44), resulting in SF4M, SF2M, SF8M, SS1M, and SJ4M, respectively (see Table S1 in the supplemental material). These rhcV mutants and their wild-type strains are all compatible with G. soja WSD and indistinguishable in symbiotic performance regarding leaf chlorophyll content, nodule number, and nitrogenase activity (Fig. 1C and Table S2). SF4 and five rhcV mutants formed nitrogen-fixing nodules on G. max cv. JD17 whereas SF8, SF2, SS1, and SJ4 induced pseudonodules on the same host (Fig. 1C). These phenotypes of rhcV mutants are similar to those of evolved compatible clones carrying insertion mutation in genes encoding T3SS structural components, TtsI or NopP, as reported previously (29). NopP of Sinorhizobium can be translocated into the host cell in a T3SS-dependent manner and can be phosphorylated by host kinases (45, 46). Variations in NopP of Sinorhizobium account for the restricted nodulation on rj2/Rfg1 soybeans but are not required for nodulation on Rj2/Rfg1 soybeans (29, 47, 48). In this work, the Rj2/Rfg1 allelic genotypes of G. max cv. JD17 and G. soja WSD were determined as rj2/Rfg1 and Rj2/Rfg1, respectively, thus supporting previous studies (29, 47). Although it remains unknown how NopP is recognized by different Rj2/Rfg1 soybeans (30, 47), the deletion of rhcV in five related Sinorhizobium strains allows bypassing the standing NopP variation.

Notably, these rhcV mutants are not equally efficient on G. max cv. JD17 (Fig. 1C and Table S2). SJ4M showed the lowest nitrogenase activity as measured by acetylene reduction ability (analysis of variance [ANOVA] followed by Tukey’s test, alpha = 0.05). Nodulation ability sequentially increased in the order from SJ4M, SS1M-SF2M, SF8M-SF4M, to SF4, and significant variations in chlorophyll content of plants were also observed among treatments (ANOVA followed by Tukey’s test, alpha = 0.05). Collectively, these six strains can roughly be assigned into the high- (SF4, SF4M, and SF8M), medium- (SF2M and SS1M), and low-efficiency (SJ4M) groups (Fig. 1C). Therefore, conserved composition of the key symbiotic signal (Nod factor) of these related strains (37) and bypassing NopP variation are not enough to confer high-efficiency symbiotic performance on SF2M, SS1M, and SJ4M compared to SF8M and SF4M. Nodulation and nitrogen fixation genes are horizontally transferable and contribute to the great diversity of rhizobial germplasms (7, 8). An ongoing experimental evolution of the plant pathogen Ralstonia solanacearum into legume symbionts after receiving a symbiosis island has succeeded in obtaining clones with improved intracellular symbiosis with the Mimosa pudica legume, though no nitrogen-fixing clones have evolved yet (9, 49), possibly due to the limitation of gene content in this single ancestor strain. In this work, the newly generated symbiotic couples (rhcV mutants and G. max cv. JD17) with contrasting symbiotic performance may represent ideal materials for further investigation of the progressive evolution of interkingdom compatibility in a pangenome scenario.

Dual pantranscriptomes of nodules and T3SS-dependent common adaptation pathways. The dual RNA-seq technique allows simultaneous investigation of interacting bacterium-host partners (50). Here, we extend its application in rhizobium-legume interactions in a pangenome context, i.e., dual pantranscriptomics. Dual RNA-seq was performed for 32 nodule samples from G. max cv. JD17 (G. max thereafter) and G. soja WSD (G. soja thereafter) plants inoculated with either wild type or rhcV mutants (Tables
S3 to S5). Differentially expressed genes (DEGs) in nodules (|Log2R| > 1, adjusted \(P < 0.05 \)) were determined between treatments of individual \(rhcV \) mutants and SF4 (Fig. S1). Both symbiotic performance and transcriptomes of the SF4M-\(G. \) soja couple are indistinguishable from the SF4-\(G. \) soja couple (7 and 0 DEGs in rhizobia and host, respectively). In contrast, the SF4M-\(G. \) max couple exhibits significant changes in transcriptome compared to SF4-\(G. \) max (694 and 3,644 DEGs), though no differences in
their nitrogenase activity and leaf chlorophyll content were observed (Fig. 1C). In contrast to SF4M, the other test rhcV mutants induce various strain- and species-dependent transcriptional changes in G. soja nodules compared to either SF4 or their wild-type strains (Fig. S1 and S2), but rare DEGs are shared between multiple treatments. These rhcV mutants induce more DEGs in G. max than in G. soja (Fig. S1), in parallel with their significant difference in symbiotic performance on G. max while being indistinguishable on G. soja (Fig. 1C and Table S2).

In G. max nodules, there are 326 upregulated and 291 downregulated host DEGs, and 20 up- and 40 downregulated rhizobial DEGs that are common for all couples involving rhcV mutants compared to SF4-G. max (Fig. S1 and Tables S3 and S4), implying potential T3SS-dependent common adaptation pathways. In the functional enrichment analyses, the upregulated host DEGs are enriched in chromatin structure and dynamics (18 genes), cell cycle control and mitosis (10 genes), and cytoskeleton (8 genes) (P < 0.05, Fisher’s exact test) while downregulated ones are overrepresented by those belonging to carbohydrate metabolism and transport (14 genes), inorganic ion transport and metabolism (10 genes), and cell wall/membrane/envelope biogenesis (7 genes). Among the common downregulated genes within G. max nodules induced by rhcV mutants (Fig. S1 and Tables S3 and S4), Glyma.06G052000 encodes a zinc transporter homolog, ZIP (51, 52), and znuB encodes an essential component of the high-affinity zinc uptake system of S. fredii (53). The znuB mutant of SF4 forms many pseudonodules and few normal nodules on G. max cv. C08, and the inactivation of Znu together with accessory zinc uptake proteins leads to downregulation of T3SS genes in the presence of the symbiotic signal genistein (53). All of these defects can be rescued by supplying replete zinc (53). These findings imply a link between the activity of rhizobial T3SS and zinc homeostasis in symbiosis, though the underlying processes remain largely unknown. It has been reported that certain effector proteins of bacterial pathogens can target chromatin access in host cells through affecting histone-modifying enzymes (54, 55) and that the expression of many nodule-specific genes correlates with ploidy-dependent opening of the chromatin together with histone tail modifications in legume nodule cells (56). Direct interactions of pathogen T3SS effectors with host cytoskeletal arsenals (such as kinesin) and the consequent promotion of virulence have been reported (57, 58). In soybean nodules, cytoskeletal arrays differ between uninfected and infected nodule cells and between developing and mature nodule cells (59). Continued reorganization of actin cytoskeleton is associated with rhizobium release from infection threads and symbiosome development (60, 61). Notably, the key symbiotic phenotype associated with the inactivation of T3SS in incompatible Sinorhizobium strains is the shift from uninfected pseudonodules to well-infected nodules (Fig. 1C). Therefore, it is likely that effector proteins secreted by rhizobial T3SS can be directly or indirectly involved in regulating the above-mentioned host functions.

Evolutionary footprints of active pangenome members. To investigate the relative contribution to symbiosis by pangenome members evolved along the evolutionary timeline of soybeans, a chronogram (Fig. 2A) was built for G. max, G. soja, and 14 reference genomes from both legume and nonlegume species within the nitrogen-fixing root nodule clade (62, 63). Common genes of G. max and G. soja were partitioned into seven sequential subsets of different conservation levels, 1 to 7, along the nodes of the chronogram (Fig. 2A and Table S3). Moreover, accessory orthologous gene clusters shared by 24 G. max accessions or 4 G. soja accessions excluding subsets 1 to 7 were defined as subset 8, and the remaining gene clusters were defined as subset 9 (Fig. 2A and Table S3). Based on RNA-seq data from different tissues of cultivated soybean (flower, pod, leaf, root, and nodule) in SoyBase (64), the subset 4 genes are particularly active in nodules compared to the other tissues (Fig. 2B). Independent of the efficiency of test Sinorhizobium strains (Fig. 1C), subset 4 genes, particularly those duplicated ones, are actively recruited by both G. max and G. soja (Fig. 2C). Duplicated genes belonging to subsets 5 and 7 and single-copy ones of subsets 4 and 7 are also
explored by \textit{G. soja} symbiosis (Fig. 2C and Fig. 3). In contrast, species-specific duplicated genes belonging to subsets 8 and 9 and single-copy ones of subsets 4, 5, 7, and 8 are explored by \textit{G. max} symbiosis (Fig. 2C and Fig. 3). An ancestral-legume genome of 7 chromosomes has been proposed (65). A whole-genome duplication event happened around 58 MYA in the Papilionoideae leading to 14 chromosomes with evidence...
from early-diverging Papilionoideae lineages (66), and subsequent genome rearrangements led to a putative 9 chromosomes predating the split into Hologalegina (including *Medicago*, *Cicer*, and *Lotus*) and Milletioids (including *Glycine*, *Vigna*, *Phaseolus*, and *Cajanus*) around 54 MYA (66). The subset 4 genes are shared by Hologalegina and Milletioids (Fig. 2A), and symbiotic hemoglobins with 3 to 12 copies in Hologalegina and Milletioids belong to this subset and form a monophyletic group in parallel with nonsymbiotic hemoglobins present in both legumes and nonlegumes (Fig. S3). Indeed, all symbiotic hemoglobins essential for nitrogen fixation of *G. max* nodules (67) belong to this subset. Therefore, pangenome members associated with the 58-MYA duplication event innovated key symbiotic arsenals which have been further explored by *Glycine* and other members of Milletioids and Hologalegina for maintaining nodule function. However, duplicated genes belonging to subset 7 and subsequent accessory subsets 8 and 9, at least partially associated with the 13-MYA whole-genome duplication event in *Glycine* leading to 20 chromosomes (68), are differentially explored by *G. max* and *G. soja*, implying a strong domestication effect on symbiosis of cultivated soybeans.

Despite more active roles of these pangenome members after whole-genome duplication events around 58 MYA and 13 MYA in soybean nodules, DEGs are
significantly enriched in subset 1 (single- and multiple-copy genes) and subset 2 (single-copy genes) in *G. max* nodules induced by individual *rhcV* mutants compared to the treatment of SF4 (Fig. 2C and Fig. 3). This suggests a considerable role of network rewiring in the more conserved subsets in symbiotic optimization. This is supported by recent phylogenomics and transcriptomics studies indicating that ancient orthologs and duplication events in plants before the existence of legume might be preadapted for symbiosis (62, 69).

To investigate contributions to nodule function by rhizobial pangenome members of different conservation levels, transcriptional levels of core and accessory genes of test *Sinorhizobium* strains were analyzed regarding different replicons. Complete genome sequences of SF4 and SF2 have been obtained in our previous work (32), and those of SF8, SS1, and SJ4 were obtained in this study (Table S6). All five strains harbor chromosome, chromid, and symbiosis plasmid (pSymA), which are conserved replicons in *Sinorhizobium* (31). Moreover, 0 to 2 accessory plasmids are present in individual strains (Table S6). By including six *Sinorhizobium* strains associated with *Medicago* (Fig. 1A), a pangenome of SF4, SF2, SF8, SS1, and SJ4 was obtained and partitioned into four subsets of different conservation levels: subset I, genus core genes (2,649); subset II, genes shared by five test strains except genus core (1,238); subset III, genes shared by two to four test strains (809 to 2,093); and subset IV, strain-specific genes (521 to 1,054) (Fig. 4A). There are 83.4% of core genes within subsets I and II showing a consistent location at the replicon level (Fig. 4B). These pangenome features

FIG 4 Conserved pangenome members of *Sinorhizobium* are actively transcribed in nodules. (A) Hierarchical divisions of core/accessory subsets for the five test *Sinorhizobium* strains. Genus core = subset I; core genes shared by five strains = subset I + subset II; genes shared by two to four strains = subset I + subset II + subset III; strain-specific genes = subset IV. (B) Core genes localized on the same (left) or different (right) replicons in the multipartite genomes of five test strains. Lines in green, red, and yellow represent homologs on the chromosome (SF4c, SF2c, SF8c, SS1c, and SJ4c), chromid (SF4b, SF2b, SF8b, SS1b, and SJ4b), and symbiosis plasmid (SF4a, SF2a, SF8a, SS1a, and SJ4a), respectively. Replicons are shown in a linearized way with the length of fragments corresponding to sizes in the Mb scale. (C) Replicon-dependent transcriptional levels of pangenome subsets defined in panel A. CI, confidence interval.
strengthen their relationships within a monophyletic group in the phylogenomic analysis (10) and the view that *Sinorhizobium* strains isolated from either *Glycine* or *Medicago* have an open pangenome (10, 70). Twenty reference transcriptomes of SF4, SF2, SF8, SS1, and SJ4 under free-living conditions from our previous work (29) were also included here for comparison. Subsets I to IV of symbiosis plasmids (pSymA) in test strains are generally up-regulated in bacteroids within nodules compared to free-living cells (Fig. 4C), and the average transcription level of a pSymA gene in nodules generally showed a positive correlation with its conservation level. This is consistent with the view that the more conserved bacterial genes are more successfully integrated in the regulation network (32, 71), while the newer pangenome members (such as those of subset IV) are more likely silenced before integration (72). Indeed, nodulation genes responding to the soybean symbiotic signal genistein (29) and those nitrogen fixation genes active in nodules belong to the more conserved subsets I and II on the symbiosis plasmid pSymA (Fig. 4C and Tables S4 and S5), and these key symbiosis genes show a low diversity in a collection of 109 *Sinorhizobium* strains isolated from soybeans in different ecoregions (73). Even though subset I genes on chromosome are generally downregulated in nodules compared to free-living cells (Fig. 4C), in line with the nongrowing status of bacteroids (21, 74), these genus core genes (subset I) and the other genes shared by test strains (subset II) are still transcribed at a high level in nodules compared to those of less conserved ones in subset III or IV (Fig. 4C).

DEGs are enriched in subsets I and II while depleted in subset III across chromosome and chromid in the treatment of SS1M and SJ4M compared to the treatment of SF4 in nodules of both *G. max* and *G. soja* (Fig. 5). This pattern is not observed for pSymA harboring key nodulation and nitrogen fixation genes (Fig. 5 and Tables S4 and S5). Notably, the divergence time between *Sinorhizobium* lineages associated

Figure 5 Enrichment of differentially expressed genes in conserved pangenome members predating the divergence of test *Sinorhizobium* strains. All samples from *G. max* cv. JD17 nodules (left) or *G. soja* WSD nodules (right) were compared to the treatment of SF4. Transcriptional levels are represented by transcripts per million (TPM). Proportions of DEGs belonging to individual pangenome subsets in all DEGs are shown. Confidence interval is shown for the average transcription levels. + and −, significant enrichment and depletion, respectively, of DEGs in individual pangenome subsets (Fisher’s exact test, alpha = 0.05).
with *Glycine* and *Medicago*, respectively, is around 106 MYA, which predates the existence of Fabaceae and the split of Papilionoideae into Milletioids (including *Glycine*) and Hologalegina (including *Medicago*) (Fig. 1A and Fig. 2A). These findings suggest a lineage-dependent network rewiring in nodules for the more conserved *Sinorhizobium* pangenome members predating the existence of legume nodulation.

Couple-dependent symbiotic optimization by conserved pathways predating the divergence of Fabaceae or *Sinorhizobium*. To gain further functional insights into dual pantranscriptomes of nodules with contrasting symbiotic efficiency, KEGG enrichment analysis was performed (Fig. 6). Compared to *G. max* nodules induced by SF4, the treatments of *rhcV* mutants SF4M, SF8M, and SF2M derived from *S. fredii* strains showed a significant enrichment of upregulated host DEGs encoding various heat shock proteins and disease resistance NB-LRR (nucleotide binding site–leucine-rich repeat domain) proteins in the estrogen signaling pathway (Fig. 6A), while the low-efficiency *G. max* nodules induced by SJ4M are enriched with downregulated genes in the MAPK (mitogen-activated protein kinase) signaling pathway and glutathione metabolism (Fig. 6A). Notably, subset 1 genes are overrepresented in these three pathways (Fig. 6B), and the treatment of SJ4M exhibits the most divergent transcriptional profiles in these individual pathways. Moreover, the low- and medium-efficiency systems (SJ4M, SS1M, and SF2M) form a cluster with similar transcriptional profiles of glutathione metabolism genes.

Within the estrogen signaling pathway, two uncharacterized intracellular immune receptors (NB-LRR) are upregulated in the treatments of high-efficiency SF4M and SF8M, and Gm.14G197700, putatively involved in posttranscriptional RNA processing in NB-LRR-mediated immunity (75), is upregulated in the treatment of SF4M. The number of upregulated heat shock proteins sequentially increases in the treatment order from low- (SJ4M = 1) to medium- (SS1M = 4; SF2M = 4) to high-efficiency strains (SF4M = 7; SF8M = 11). More components at early steps of the MAPK pathway initiated by MAMP (microbe-associated molecular patterns) (76) are downregulated in the treatment of SJ4M, such as the cell surface immune receptor FLS2 recognizing bacterial flagellin (77, 78), seven RLCKs (receptor-like cytoplasmic kinases), and three MAPKs including a GmMEKK1 homolog (Gm.14G165700) negatively regulating defense responses (79). The thiol tripeptide glutathione is a well-known antioxidant and redox buffer (80), and glutathione S-transferase can conjugate target molecules to glutathione and act as a glutathione peroxidase to scavenge peroxides such as H$_2$O$_2$ (80). The number of downregulated glutathione S-transferases increased in the order from high- (SF4M = 2; SF8M = 3) to medium- (SF2M = 7; SS1M = 7) to low-efficiency strains (SJ4M = 10). In line with this transcriptional profile of glutathione S-transferase, it has been demonstrated that the downregulation of glutathione S-transferase in soybean nodules leads to a decrease in nitrogenase activity and an increase in oxidatively damaged proteins (81).

In bacteroids of *G. max* nodules, there is a general downshift of the oxidative phosphorylation pathway in less efficient strains (SJ4M, SS1M, and SF2M) (Fig. 6C and D and Table S4). This pathway is overrepresented by conserved subset I genes encoding respiratory components ATPase, Nuo, Cytcbb3, Cox, and Cytbd and those involved in various physiological steps producing NAD(P)H (Table S4) (23, 82). The energetically expensive processes including secretion systems T3SS and T4SS (overrepresented by subset II genes) and motility proteins (mainly subset I and II genes) are highly transcribed in SS1M and/or SJ4M (Fig. 6C). These findings indicate a low-energy status of bacteroids in these less efficient strains, though nitrogen fixation is an energetically high-cost reaction (23). In addition to these enriched pathways, notable transcriptional changes in individual conserved functional genes supporting nitrogen fixation were uncovered in low-efficiency bacteroids. The essential FeS assembly process (83) may be restricted in low-efficiency bacteroids due to the low transcription level of *sufAE*, *padD*, and *nifU* genes (Table S4). However, the key regulator gene *nifA*; nitrogenase structural genes *nifHDK*; and *nifBENQXW*, *fdxBN*, and fixABC involved in FeMo cofactor synthesis, nitrogenase maturation/stabilization, and
electron donation (23, 83) are more actively transcribed in low-efficiency bacteroids than in those of SF4 (Table S4). In parallel with the disordered transcriptional profiles associated with host antioxidant functions, low-efficiency bacteroids also show a low transcription level in antioxidant functions including subset I members such as superoxide dismutase (SJ05684_c05970), peroxiredoxin (SJ05684_c05210), glutathione S-transferase (SJ05684_c36640), and thioredoxin reductase (SJ05684_c15680 and SJ05684_c05650) and a subset III member peptide-methionine (R)-S-oxide reductase (SJ05684_c06170).

Figure 6 Symbiotic efficiency of *Glycine max* cv. JD17 nodules correlates with lineage-specific rewiring of core pathways predating the divergence of Fabaceae or *Sinorhizobium*. Function enrichment (A and C) and hierarchical clustering (B and D) analyses were performed for KEGG pathways harboring differentially expressed genes (DEGs) between treatments of individual rhcV mutants and that of wild-type SF4 (enrichment analysis: Fisher’s exact test, p. adjust < 0.05; hierarchical clustering analysis: red and green represent up- and downregulated genes, respectively, based on Log2R(TPMmutant/TPMwild-type), and pangenome subset assignments of individual genes are indicated by different colors for both symbiotic partners).
These functions are involved in the dismutation of superoxide radicals, H$_2$O$_2$ scavenging, and various detoxification processes (82, 84, 85).

As described above, the couples of different symbiotic efficiencies are characterized by distinct transcriptional files of genes involved in immunity response, antioxidant functions, and energy metabolism. Indeed, *G. max* nodules infected by SJ4M have fewer bacteroids (Fig. 7A). The MAPK kinase kinase GmMEKK1 homologs negatively regulating defense responses in soybean (79) are downregulated in the SJ4M treatment (Fig. 7B, qRT-PCR). An immunoblotting experiment using these nodule samples demonstrates highly active MPK3 and MPK6 (Fig. 7C), two well-studied MAPKs which are regulated by MEKK1 and respond to oxidative stress (79, 86, 87). Among diverse defense response marker genes (88), *PR5* is transcribed at a significantly higher level in the treatment of SJ4M (Fig. 7D, qRT-PCR). All of these efficiency-related genes belong to subset 1 predating the divergence of Fabaceae.

In line with the elevated H$_2$O$_2$ in *GmMEKK1*-silenced soybean plants (79), the low-efficiency SJ4M treatment is characterized with the highest level of H$_2$O$_2$ (Fig. 7E).
medium-efficiency treatments SF2M and SS1M also exhibit a significantly higher level of H$_2$O$_2$ than high-efficiency SF4, SF4M, and SF8M (Fig. 7E). This phenomenon can be at least partially explained by the efficiency of rhizobial oxidative phosphorylation as measured by ratios of canonical energy currency molecules (Fig. 7F to H). As to ADP/ATP, NADP/NADPH, and NAD/NADH ratios, the low-efficiency SJ4M bacteroids are 86.3%, 523%, and 158% higher than that of SF4 bacteroids, respectively. The medium-efficiency treatments SF2M and SS1M show a significantly higher ratio of NAD/NADH than the high-efficiency treatments SF4, SF4M, and SF8M. These physiological and biochemical results provide strong evidence for the critical role of conserved pathways predating the divergence of Fabaceae and *Sinorhizobium* in optimizing symbiotic efficiency.

Conclusion. With conserved compositions of Nod factors (37), five related *Sinorhizobium* strains are able to induce nodules/pseudonodules on cultivated and wild soybeans. The deletion of *rhcV* or fast adaptive evolution mediated by parallel transpositions of insertion sequences into the T3SS gene cluster (29) allows bypassing standing variations in effector proteins (47) and improving compatibility to different extents among test strains. Dual pantranscriptomics uncovers that the more actively transcribed genes in nodules are those conserved symbiosis genes in rhizobia and those associated with the whole-genome duplication event in the Papilionoideae (58 MYA) in soybeans. *G. max* and *G. soja* differentially explored pangenome members of different conservation levels, particularly those associated with the whole-genome duplication event in the *Glycine* genus (13 MYA). However, the variation in symbiotic efficiency correlates with lineage-dependent rewiring of ancient core pathways predating the divergence of Fabaceae or *Sinorhizobium*, which is supported by further physiological and biochemical evidences. Collectively, innovation of key symbiotic arsenals together with the largely unexplored network rewiring in existing ancient core pathways underlines the progressive evolution of rhizobium-legume compatibility. This insight not only is significant for improving the application benefits of rhizobial inoculants in sustainable agriculture but also advances our general understanding of the interkingdom coevolution which is theoretically explored by all host-microbiota interactions.

MATERIALS AND METHODS

Bacterial strains, plasmids, growth condition, and soybeans. Strains, plasmids, and primers used in this work are listed in Table S1 in the supplemental material. *Sinorhizobium* strains and *Escherichia coli* strains were cultured as described previously (32). To generate *rhcV* mutants, the upstream and downstream DNA fragments of target *rhcV* genes in individual genomes were amplified by PCR and cloned into pCM351, carrying a cre-lox system (89). The resultant pCM351 derivatives were conjugated into *Sinorhizobium* strains with the helper pRK2013, and deletion mutants were screened on the TY (tryptone yeast)-agar plates supplied with 30 mg/ml nalidixic acid and 30 mg/ml gentamicin. Candidate clones were verified by colony PCR and Sanger sequencing. To determine Rj2/Rfg1 allelic genotypes of *G. max* cv. JD17 and *G. soja* WSD, RNA samples extracted from 1-week-old seedlings by using RNAiso Plus (TaKaRa) were used to synthesize cDNA with a reverse transcription kit (Genstar). Then, two pairs of primers (Table S1) were used to amplify two fragments corresponding to polymorphic regions 452 to 490 and 731 to 758 of Rj2/Rfg1 protein (28). PCR products were subject to Sanger sequencing. The resultant sequences were compared to those of different Rj2/Rfg1 genotypes reported previously (28).

Genome sequencing and functional annotation. DNA of SF8, SS1, and SJ4 was extracted using the TIANamp bacterial DNA kit (Tiangen). The genomes were sequenced by PacBio and Illumina platforms and assembled at BGI-Shenzhen. Gaps were closed by Sanger sequencing of PCR products using primers listed in Table S1. Gene prediction and annotation were performed by using RAST (90) and eggNOG (91).

Pangenomic and phylogenetic analysis. OrthoFinder (92) with default parameters (-og) was used to identify orthogroups. Briefly, gene length bias and phylogenetic distance were removed from length-normalized similarity score, and the lower limit of orthogroup sequence similarity was defined by using RBNHs (Reciprocal Best length-Normalized hit). Genes present in all *Sinorhizobium* strains were defined as subset I. Genes shared by 5 soybean microsymbionts excluding subset I were defined as subset II, and genes shared by 2 to 4 soybean microsymbionts but not present in subset II were defined as subset III. The remaining strain-specific genes were defined as subset IV. The OrthoFinder output file Orthogroups. GeneCount.tsv contains counts of the number of genes for each strain in each orthogroup; therefore, the orthogroups that contained fewer than two genes per strain were defined as single-copy genes, but the others were defined as multiple-copy genes. Similarly to the method of gene subset definition in *Sinorhizobium*, 9 pangenome subsets of *Glycine* were defined by analyzing 4 *G. soja* and 24 *G. max* genomes available in the public database (63). The protein sequences of phytoglobins from the
leguminous and nonleguminous plants were extracted from the NCBI database and aligned with the ClustalW program (93), and the phylogenetic tree was constructed by the maximum-likelihood method using MEGA (94). Single-copy genes (1,290 genes) shared by 11 Sinorhizobium strains and an outgroup, *Rhizobium leguminosarum* bv. *trifolii* WSM1689, were used to construct a maximum-likelihood phylogenetic tree by RAxML (95) with the PROTGAMMAAUTO setting using 250 bootstrap replicates. This phylogenomic tree was used as the species tree. A species tree of test plants was inferred from 25,329 orthologs shared by all 16 plants by using the STAG (species tree inference from all genes) algorithm (96) and rooted using STRIDE (97).

Divergence time estimation. A Bayesian method implemented in BEAST2 (98) with an uncorrelated lognormal (UCLN) relaxed clock model was used to estimate divergence times for both bacteria and plant (parameters: Gamma Category Count = 4, Subset Model = GTR, Frequencies = Empirical). The selection of best substitution model was done with IQ-TREE (99). The Calibrated Yule Model with lognormal distribution was used for calibration with previous estimates of *Sinorhizobium-Rhizobium* divergence (203 to 346 MYA) (38) and the crown of Fabaceae (60 to 70 MYA) (41). To estimate intragenus-level divergence time of rhizobia, four high-resolution housekeeping genes (*ctaE*, *rpoB*, *rplB*, and *glpK*) (Table S7) with phyllogeny congruent with the phylogenomic species tree were used. For plant, 20 single-copy core genes (Table S7) showing congruent phylogeny with the species tree were used.

Plant assays, nitorgenase activity assays, and nodule thin sections. Seeds and rhizobial inoculants were prepared as described previously (32). Each seedling was inoculated with 1 ml rhizobial culture (optical density at 600 nm [OD600] = 0.2). Plants were grown at 24°C with 12-h day and night cycles.

RNA-seq and qRT-PCR. Nodule total RNA was extracted by using RNAiso Plus (TaKaRa). Purified RNA was quantified by using NanoPhotometer (Implen), and quality was checked by using capillary electrophoresis (BioAnalyzer; Agilent). The resultant RNA samples were subjected to miRNA enrichment, library construction, and strand-specific RNA sequencing (PE150) on an Illumina HiSeq 2000 platform following the manufacturer’s instructions (Illumina) by Novogene (The Genome Analysis Centre, Beijing, China). Two sets of nodule samples were used.

Bioinformatics procedures in transcriptomic analysis. RNA-seq reads of *Sinorhizobium* were mapped to their corresponding reference genomes with Bowtie 2 (103). RNA-seq reads from soybeans were mapped to genomes of *G. max* (Wm82.a2) and *G. soja* (P483463.a1) obtained from SoyBase (https://soybase.org), with HISAT2 (104). Mapped reads for the protein-encoding gene in each sample were counted using featureCounts (105). Differentially expressed genes were identified by using DESeq2 (106) with an absolute fold change above 1 and adjusted P value of < 0.05. Hierarchical clustering was performed by using the standard R function hclust (hclust, method = average) (107). R package ClusterProfiler (108) was used in KEGG enrichment analysis. For all enrichment analyses, the annotation data set of individual genomes was used as background, and a P value below 0.05 indicates significant enrichment. R package ggplot2 (109) was used to visualize these enrichment results.

Immunoblot detection of phosphorylated MPK6 and MPK3. Nodules (4 g) were ground into powder in liquid nitrogen, and protein was extracted by 5 ml extraction buffer (50 mM Tris-MES [morpholineethanesulfonic acid], pH 8, 0.5 M sucrose, 1 mM MgCl2, 10 mM EDTA, 5 mM dithiothreitol [DTT], and 300 mM sucrose, 10 mM phosphate buffer, pH 7.0, 2 mM MgCl2, and 0.33 g polyvinylpyrrolidone [PVP]).
and the mixture was centrifuged at 400 \times g for 10 min at 4°C to remove the majority of plant cell particles. The supernatant was centrifuged at 12,000 \times g for 10 min at 4°C. The resultant pellet was suspended with 200 \mu l phosphate-buffered saline (PBS) buffer (pH 7.5) and stored at -80°C. The ratios of NAD+/NADH and NADP+/NADPH were determined by using the NAD+/NADH assay kit (S0175) and NADP+/NADPH assay kit (S0179), respectively, from Beyotime Biotech, China. Briefly, 20 \mu l supernatant and 90 \mu l working solution (S0175-6 for NAD+/NADH and S0179-5 for NADP+/NADPH) were added to a 96-well plate, placed at 37°C for 20 min, and measured immediately with a spectrometer (450 nm). Cellular ADP/ATP levels were measured by EnzyLight ATP assay (BioAssay Systems, Hayward, CA). Briefly, 10 \mu l supernatant was mixed with 90 \mu l ATP reagent in a 96-well plate. After 1 min, luminescence (RLU B) was detected on a luminometer. The ADP/ATP ratio was calculated as follows: (RLUB-RLUA)/RLUA. Three independent biological replicates were used in these experiments.

Data availability. Raw sequence data from our RNA-seq analyses can be accessed via NCBI Sequence Read Archive (PRJNA652809). Complete genomes of five wild-type strains used in this study have been deposited in the GenBank database (BioProject no. PRJNA353922: SF8, SS1, and SJ4; BioProject no. PRJNA285929: SF4 and SF2).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.

FIG S1, TIF file, 1.3 MB.
FIG S2, TIF file, 0.5 MB.
FIG S3, TIF file, 2.4 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 17.9 MB.
TABLE S4, XLSX file, 12.1 MB.
TABLE S5, XLSX file, 2.9 MB.
TABLE S6, XLSX file, 0.01 MB.
TABLE S7, XLSX file, 0.01 MB.

ACKNOWLEDGMENTS
We thank the Shi-jiazhuang Branch of the National Soybean Improvement Center for providing seeds of JD17.

This work was supported by the National Key R&D Program of China (grant number 2019YFA0904700), the National Natural Science Foundation of China (grant numbers 32070078 and 31522003), the Innovative Project of the State Key Laboratory of Plant Genomics, Key Laboratory of Plant Function Genomics of Ministry of Education, and the Fundamental Research Funds for the Central Universities Scientific Fund (2019TC086).

C.-F.T. and Z.Z. planned and designed the research. W.-J.C., B.Z., R.Z., L.-X.L., and J.J. performed experiments and analyzed data. C.-F.T., W.-J.C., and B.Z. wrote the manuscript.

We declare that we have no competing interests.

REFERENCES
Cui et al.

