Complete Genome Sequencing of *Acinetobacter baumannii* AC1633 and *Acinetobacter nosocomialis* AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases

Ahmed Ghazi Alattraqchi,* Farahiyah Mohd Rani,* Nor Iza A. Rahman,* Salwani Ismail,* David W. Cleary,b,c Stuart C. Clarke,b,c,d,e,f Chew Chieng Yeoa

aFaculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia
bFaculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
cNIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom
dGlobal Health Research Institute, University of Southampton, Southampton, United Kingdom
eSchool of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
fCentre for Translational Research, IMU Institute for Research, Development and Innovation (IRDI), Kuala Lumpur, Malaysia

Ahmed Ghazi Alattraqchi and Farahiyah Mohd Rani contributed equally to this work. Author order was determined alphabetically.

ABSTRACT Carbapenem-resistant *Acinetobacter* spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant *Acinetobacter* spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, *A. baumannii* AC1633 and *A. nosocomialis* AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes *bla*_{NDM-1} and *bla*_{OXA-58} in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of IS_{Aba11} and an IS₄ family element in pAC1633-1, and IS_{Aba11} along with relBE toxin-antitoxin genes flanked by inversely oriented pdf (XerC/XerD) recombination sites in pAC1530. The *bla*_{NDM-1} gene was encoded in a Tn125 composite transposon structure flanked by IS_{Aba125}, whereas *bla*_{OXA-58} was flanked by IS_{Aba11} and IS_{Aba3} downstream and a partial IS_{Aba3} element upstream within a pdf module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of *Acinetobacter* from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. *A. baumannii* AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdf module.

IMPORTANCE Bacteria of the genus *Acinetobacter* are important hospital-acquired pathogens, with carbapenem-resistant *A. baumannii* listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant *A. baumannii* AC1633 and *A. nosocomialis* AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred
Infections caused by the Gram-negative pathogen *Acinetobacter baumannii* have become increasingly problematic, particularly among immunocompromised patients and patients in intensive care units, due to its ability to acquire and develop resistance to multiple antimicrobials and thereby severely limit treatment options (1, 2). The genomes of *Acinetobacter* strains are flexible and adaptable, prone to accumulating antibiotic resistance determinants through horizontal gene transfer involving mobile genetic elements (3, 4). Resistance to carbapenems, which are among the antimicrobials of last resort for the treatment of multidrug-resistant (MDR) *Acinetobacter* infections, is increasing, with resistance rates exceeding 90% in certain regions of the world (5). Of pressing concern, pandrug-resistant (PDR) isolates of *A. baumannii*, which are resistant to all classes of antimicrobials, have been reported from clinical as well as environmental samples (6–8). In the CDC’s 2019 Antibiotic Resistance Threats Report, carbapenem-resistant *A. baumannii* has been listed as an “urgent” threat (9). Likewise, the World Health Organization (WHO) has categorized carbapenem-resistant *A. baumannii* as a critical priority pathogen toward which new antimicrobials are urgently needed (10).

A. nosocomialis is closely related to *A. baumannii* and, along with *A. pittii*, *A. seifertii*, *A. dihkshoormiae*, and *A. calcoaceticus*, they are often grouped together as the *A. baumannii*-A. calcoaceticus (Abc) complex due to difficulties in identifying these bacteria by traditional biochemical methods (11, 12). In our recent study of *Acinetobacter* isolates obtained from the main tertiary hospital in the state of Terengganu, Malaysia in 2015, the majority (83.7%) were *A. baumannii* followed by *A. nosocomialis* (10.4%), with multidrug resistance much more prevalent in *A. baumannii* (13). Nevertheless, *A. nosocomialis* and other members of the Abc complex are clinically relevant, with carbapenem-resistant and MDR isolates being reported (14).

Multiple mechanisms of drug resistance are usually at play in *Acinetobacter* isolates and these include enzymatic inactivation of the antibiotic, modifications in the target sites, reduced accumulation of antibiotics through expression of efflux systems or mutations in outer membrane channels, and the formation of biofilms (15, 16). Carbapenem resistance in *Acinetobacter* is frequently attributed to the acquisition and production of OXA β-lactamases, which are categorized as Ambler class D enzymes with a serine residue within the active site that catalyzes the hydrolysis of the β-lactam substrate (17). Common acquired OXA subtypes found in *Acinetobacter* include OXA-23, OXA-24/40, OXA-58, OXA-143, and OXA-235, with the genes encoding them usually associated with or located in mobile genetic elements (16, 17). In some instances, an upstream and adjacent insertion sequence (IS) element provides a strong outward-directing promoter for their expression (17). *A. baumannii* also harbors an intrinsic *bla*OXA-51/*bla*OXA-51-like gene in its chromosome and, although the OXA-51/OXA-51-like enzyme has been shown to hydrolyze imipenem and meropenem, its affinity for these carbapenems is quite low and would not normally confer carbapenem resistance (17). However, the insertion of IS elements with outward-directing promoters, such as ISAb1 upstream of the *bla*OXA-51/*bla*OXA-51-like gene has been shown to increase expression of the enzyme, leading to carbapenem resistance (18). Nevertheless, recent reports have indicated that in the absence of an acquired carbapenemase gene, the presence of ISAb1 or similar elements upstream and adjacent to the intrinsic *bla*OXA-51/
RESULTS AND DISCUSSION

Background of the *A. baumannii* AC1633 and *A. nosocomialis* AC1530 clinical isolates. *A. baumannii* AC1633 and *A. nosocomialis* AC1530 are part of our collection of *Acinetobacter* spp. clinical isolates that were obtained since 2011 from Hospital Sultanah Nur Zahirah (HSNZ), the main public tertiary hospital in the state of Terengganu, Malaysia (13, 25). Whole-genome sequencing was performed on a random selection of 50 isolates obtained from 2011 to 2016 (manuscript in preparation) and preliminary analyses of the genome sequences indicated two isolates that harbored the *bla*_{NDM-1} gene, i.e., AC1633 and AC1530.

A. baumannii AC1633 was isolated from the blood of a 60-year-old female patient in the neurology intensive care unit in April 2016. The patient had hospital-acquired pneumonia with respiratory failure and eventually succumbed to septicemia 41 days after hospital admission. *A. nosocomialis* AC1530 was isolated from the blood of a 14-year-old male patient in the surgical ward in April 2015. The patient was admitted for polytrauma due to a motor vehicle accident and developed hospital-acquired pneumonia complicated with right parapneumonic effusion, but recovered and was discharged after 60 days. *A. baumannii* AC1633 was resistant to the carbapenems (with imipenem, meropenem, and doripenem MIC values of >32 μg/ml each), cephalosporins (cefotaxime, ceftriaxone, ceftazidime, and cefepime), β-lactam/β-lactamase inhibitor combinations (pipercillin-tazobactam and ampicillin-sulbactam), trimethoprim-sulfamethoxazole, ciprofloxacin, and tetracycline. AC1633 also showed resistance to gentamicin but was susceptible to the other aminoglycosides tested (namely, amikacin and tobramycin), as well as to levofloxacin, doxycycline, and the polymyxins (polymyxin B and colistin). *A. nosocomialis* AC1530 was resistant to the carbapenems (with MIC values for imipenem, meropenem, and doripenem of >32 μg/ml each), cephalosporins (cefotaxime, ceftriaxone, ceftazidime, and cefepime), trimethoprim-sulfamethoxazole, and gentamicin, but was susceptible to all other antibiotics tested. Thus, both AC1633 and AC1530 are categorized as MDR following the criteria proposed by the joint commission of the U.S. Centers for Disease Control and Prevention (CDC) and the European Centre for Disease Prevention and Control (ECDC) (26).

Whole-genome sequencing and comparative analyses of AC1633 and AC1530. Analysis of the Illumina-sequenced genomes of *A. baumannii* A1633 and *A. nosocomialis* AC1530 indicated the presence of the *bla*_{NDM-1} and *bla*_{OXA-58} carbapenemase genes.

The metallo-β-lactamases (MBLs) or Ambler class B enzymes, such as the New Delhi metallo-β-lactamase (NDM) group, represents another class of acquired carbapenemases that have been found in *Acinetobacter* spp., being first reported in *A. baumannii* from India (20) and China (21). MBLs, including NDMs, are dependent on zinc ions at the active site of the enzyme (16). The *bla*_{NDM-1} gene has since been found in many other *Acinetobacter* spp., is usually carried in the composite transposon Tn125 or its derivatives, and is either plasmid- or chromosome-encoded (22). NDM-1 confers resistance to all β-lactams except monobactams, such as aztreonam, and is not inhibited by β-lactamase inhibitors such as clavulanic acid, sulbactam, tazobactam, and avibactam (16, 23, 24). Most isolates that harbor the *bla*_{NDM-1} gene are likely MDR or extensive-drug resistant (XDR) due to the association of *bla*_{NDM-1} with other resistance genes (16, 22).

Here, we report the whole-genome sequences of two NDM-1-producing, carbapenem-resistant *Acinetobacter* clinical isolates, *A. baumannii* AC1633 and *A. nosocomialis* AC1530, obtained from the main tertiary hospital in the state of Terengganu in Peninsular Malaysia. We show that in these two isolates, the *bla*_{NDM-1} gene is colocated with *bla*_{OXA-58} on a large ca. 170-kb plasmid along with various other antimicrobial-resistance genes, and that the carriage of this plasmid in these two isolates likely led to their MDR status. We also show sequence evidence that this plasmid was likely derived from two plasmids that separately encoded *bla*_{NDM-1} and *bla*_{OXA-58} in a Malaysian *A. pittii* isolate and that they combined via an IS1006-mediated recombination event.
Production of the NDM-1 metallo-β-lactamase (MBL) in both isolates was validated by testing with the Etest MBL kit (bioMérieux). Further analyses of the assembled genome data of AC1530 and AC1633 revealed the possibility that the blaNDM-1 and blaOXA-58 genes could be harbored in either one or two large plasmids in both isolates; however, this was difficult to ascertain as there were more than 20 assembled contigs from each isolate’s genome data that could potentially belong to these plasmids. Thus, the genomic DNA of these two isolates was subjected to PacBio sequencing and hybrid assembly was then performed on the PacBio and Illumina reads. The resulting assembled genome features of these two isolates are listed in Table 1.

The genome of *A. baumannii* AC1633 is nearly 4.4 Mb in size and is comprised of a single chromosome of 4.36 Mb (accession no. CP059300) and four plasmids designated pAC1633-1 (174 kb; CP059301), pAC1633-2 (12.6 kb; CP059303), pAC1633-3 (9.9 kb; CP059304), and pAC1633-4 (5.2 kb; CP059302). *A. baumannii* AC1633 is typed as ST2089 under the Oxford multilocus sequence type (MLST) scheme and ST126 under the Pasteur MLST scheme. AC1633 does not belong to any of the major *A. baumannii* global clonal lineages, and phylogenetic analysis of the whole-genome sequence in comparison with the sequences of selected *A. baumannii* isolates (Fig. 1A, Table S1 in the supplemental material) showed it is most closely related to *A. baumannii* CIP70.10 (ATCC 15151), which was isolated in France in 1970 and is an important reference strain due to its susceptibility to most antimicrobials (27). CIP70.10 also belonged to the same STs as AC1633. Phylogenetic analyses also indicated that AC1633 is not closely related to any of the few Malaysian *A. baumannii* genomes that are currently available in the database, most of which belonged to the Global Clonal 2 (GC2) lineage (28, 29). A. *baumannii* isolates AC12, AC29, and AC30, which were isolated from the same hospital as AC1530 and AC1633 but in the year 2011, were of the sequence type ST195 (Oxford)/ST2 (Pasteur) (30, 31). A recent report of 13 *A. baumannii* genomes from Malaysia indicated three isolates that harbored blaNDM-1 (29); however, we were unable to compare these isolates with ours as the sequence files that were associated with the GenBank accession numbers provided in the manuscript have yet to be publicly released at the time of writing (December 24, 2020). Using the KAPTIVE database that enables the typing of *A. baumannii* strains by variation in their composition and structure of capsular polysaccharide (CPS) biosynthetic genes (32), AC1633 was typed as OCL6 for the outer core biosynthesis locus and KL14 for the K locus, which contain genes responsible for the biosynthesis and export of CPS, and both loci were typed with 100% match confidence level.

A. nosocomialis AC1530 has a single chromosome of 3.98 Mb (CP045560.1) and a plasmid of 173.9 kb designated pAC1530 (CP045561.1). AC1530 was assigned by the curators of the PubMLST database (33) to the Pasteur ST1539 (with alleles cpn60-47, fusA-26, gldA-50, pyrG-14, recA-26, rplB-16, and rpoB-49) and Oxford ST2195 (with alleles cpn60-73, gdhB-86, gldA-76, gpi-4, gyrB-65, recA-21, and rpoD-90). Phylogenetic analyses showed that the closest relative of AC1530 is *A. nosocomialis* T228 (accession no. JRXA01000001.1), a clinical isolate obtained from Bangkok, Thailand in 2010 (Fig. 1B, Table S1). However, *A. nosocomialis* T228 was typed as Pasteur ST279 and Oxford ST1897, whereas AC1530 shared only a single allele in the Oxford scheme (gyrB-65) and two alleles in the Pasteur scheme (fusA-26, rplB-16) with T228.

Table 1: Genome features of *A. baumannii* AC1633 and *A. nosocomialis* AC1530

<table>
<thead>
<tr>
<th>Feature</th>
<th>A. baumannii AC1633</th>
<th>A. nosocomialis AC1530</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome</td>
<td>pAC1633-1</td>
<td>pAC1633-2</td>
</tr>
<tr>
<td>Size (bp)</td>
<td>4,364,474</td>
<td>174,292</td>
</tr>
<tr>
<td>% GC content</td>
<td>39</td>
<td>38</td>
</tr>
<tr>
<td>Total no. of genes</td>
<td>2,112</td>
<td>29</td>
</tr>
<tr>
<td>No. of tRNA operons</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>No. of tRNAs</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>Total no. of coding sequences (CDS)</td>
<td>4,096</td>
<td>176</td>
</tr>
</tbody>
</table>

Altraaqchi et al. January/February 2021 Volume 6 Issue 1 e01076-20 msphere.asm.org
Antimicrobial resistance genes in the genomes of AC1633 and AC1530. Interestingly, the bulk of the acquired antimicrobial resistance genes for \textit{A. baumannii} AC1633 and \textit{A. nosocomialis} AC1530 came from the large ca. 170-kb plasmid, pAC1633-1 and pAC1530, respectively (Table 2). \textit{A. baumannii} AC1633 harbored two \textbeta-lactam resistance genes in its chromosome, i.e., the intrinsic \textit{bla}\textsubscript{OXA-51-like} gene categorized as \textit{bla}\textsubscript{OXA-116} and the \textit{Acinetobacter}-derived AmpC cephalosporinase (ADC) gene \textit{bla}\textsubscript{ADC-25} (accession no. EF016355.1) (34). In some cases, carbapenem resistance and increased cephalosporin resistance have been linked with upregulation of the respective \textit{bla}\textsubscript{OXA-51/bla}\textsubscript{OXA-51-like} or \textit{bla}\textsubscript{ADC} genes through insertion of IS\textsubscript{Aba1} or related IS elements that harbor outward-directing promoters (18, 35, 36); however, no such IS elements could be found upstream of the \textit{bla}\textsubscript{OXA-116} and \textit{bla}\textsubscript{ADC-25} genes in \textit{A. baumannii} AC1633. Tetracycline resistance in AC1633 is likely mediated by the \textit{tetA}(39) gene that was carried on the smaller 12.6-kb plasmid, pAC1633-2 (Table 2), and that encodes the tetracycline-specific TetA(39) efflux pump of the major facilitator superfamily (MFS). Notably, pAC1633-1 also harbors the \textit{adeABC} operon that encodes the multidrug resistance-nodulation-cell division (RND) family efflux system along with its two-component regulatory system, \textit{adeRS}, which is located upstream and transcribed divergently from \textit{adeABC}. This efflux system is usually chromosome encoded in \textit{Acinetobacter} and the multidrug resistance phenotype has been shown to correlate with overexpression of \textit{adeABC} (37, 38). Interestingly, the \textit{A. baumannii} AC1633 chromosome harbors another copy of \textit{adeRS} and \textit{adeAB} (nucleotides [nt] 1011642 to 1016860), but \textit{adeC} was absent. There were no obvious signs of mobile elements or genomic islands in the vicinity of the chromosomal \textit{adeRS}-\textit{adeAB} genes that could explain the deletion of \textit{adeC}. The chromosome of AC1633 also harbors genes encoding the other \textit{Acinetobacter} RND family efflux pumps \textit{adeFGH} and \textit{adeUK}, along with their respective regulatory genes \textit{adeL} and \textit{adeN} (37, 39), three genes encoding MFS efflux pumps, i.e., \textit{abaF}, \textit{abaQ}, and \textit{amvA}, and, finally, \textit{abeS}, which encodes a small-multidrug resistance (SMR) family efflux pump (Table 3).

As for \textit{A. nosocomialis} AC1530, very few antimicrobial resistance genes are found in its chromosome, and the only resistance gene encoding an antibiotic-inactivating
<table>
<thead>
<tr>
<th>Strain</th>
<th>Carbenem</th>
<th>Cephalosporins</th>
<th>Aminoglycosides</th>
<th>Tetracyclines</th>
<th>Fluoroquinolones</th>
<th>Sulfonamides</th>
<th>Macrolides</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. baumannii AC1633</td>
<td>IMI<sup>b</sup> MEM<sup>b</sup> DOR<sup>b</sup></td>
<td>CTX<sup>a</sup> FOX<sup>a</sup> TAZ<sup>a</sup> FEP<sup>a</sup></td>
<td>GEN<sup>a</sup> AMI<sup>a</sup> TOB<sup>a</sup></td>
<td>TET<sup>a</sup> DOX<sup>a</sup></td>
<td>CIP<sup>a</sup> LEV<sup>a</sup></td>
<td>SXT<sup>a</sup></td>
<td>ND</td>
</tr>
<tr>
<td>AC1633-1 Chromosome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. nasocomialis AC1530</td>
<td>IMI<sup>a</sup> MEM<sup>a</sup> DOR<sup>a</sup></td>
<td>CTX<sup>a</sup> FOX<sup>a</sup> TAZ<sup>a</sup> FEP<sup>a</sup></td>
<td>GEN<sup>a</sup> AMI<sup>a</sup> TOB<sup>a</sup></td>
<td>TET<sup>a</sup> DOX<sup>a</sup></td>
<td>CIP<sup>a</sup> LEV<sup>a</sup></td>
<td>SXT<sup>a</sup></td>
<td>ND</td>
</tr>
<tr>
<td>Chromosome</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1530</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aMutations in the chromosomally encoded gyrA and parC genes.

^bIMI, imipenem; MEM, meropenem; DOR, doripenem; CTX, ceftriaxone; FOX, cefotaxime; TAZ, ceftazidime; FEP, ceftepime; GEN, gentamicin; AMI, amikacin; TOB, tobramycin; TET, tetracycline; DOX, doxycycline; CIP, ciprofloxacin; LEV, levofloxacin; SXT, trimethoprim-sulfamethoxazole; ND, not determined; R, resistance; I, intermediate resistance; S, susceptible.
enzyme is a blaADC-encoding cephalosporinase that shared 94% amino acid sequence identity with ADC-68 (accession no. AGL39360.1) (40). However, as in the A. baumannii AC1633 genome, no IS elements with outward-directing promoters could be detected upstream of this gene. In contrast to AC1633, the chromosome of A. nosocomialis AC1530 harbored a full copy of the adeRS-adeABC efflux system besides the copy that resides on pAC1530. Other efflux pumps found encoded in the AC1530 chromosome are adeFGH and its regulatory gene adeL, the MFS superfamily pumps amvA and abaQ, and the SMR family abeS (Table 3). The same suite of resistance genes in pAC1633-1 was found in pAC1530 (Table 2) and, therefore, likely contributes to its resistance phenotype.

Characteristics of pAC1633-1 and pAC1530 and their carriage of antimicrobial resistance genes. Plasmids pAC1633-1 from A. baumannii AC1633 and pAC1530 from A. nosocomialis AC1530 were nearly identical except at five regions as follows (Fig. 2): (i) insertion of ISAb11 into an open reading frame (ORF) encoding an 85-aa (amino acid) hypothetical protein (locus tag: GD578_19675; accession no. QGA46103.1) which contains a ribosomal protein L7/L12 C-terminal domain (pfam00542) in pAC1530 at nt 40824 (nt 40825 to 41927 of pAC1633-1); this ORF is upstream of the traMNO genes and lies within a cluster of genes that are proposed to be part of the conjugative transfer region for the plasmid; (ii) an IS4 family transposase at nt 58863 to 60133 in pAC1633-1 with no matches to existing IS elements in the ISFinder database (41) and no inverted repeats flanking the putative transposase gene; this is likely a remnant of an IS element that had inserted within ISAb31, leading to only a partial ISAb31 downstream of this IS4-family remnant element (a full-length ISAb31 is found in the corresponding site in pAC1530 with a characteristic 2-bp “TA” direct repeat flanking the IS element); (iii) a 255-bp insertion within a hypothetical ORF at nt 89589 to 92233 in pAC1633-1 with no characteristic signature sequences of mobile elements could be detected within this short fragment; (iv) insertion of ISAb11 into an ORF encoding a putative toxin of the Zeta toxin family in pAC1530; this insertion, at nt 101270 of pAC1633-1, led to a 5-bp direct repeat (TATAG) in pAC1530 (nt 98631 to 99731); and (v) addition of an relBE toxin-antitoxin (TA) system along with a

<table>
<thead>
<tr>
<th>Strain</th>
<th>Resistance-nodulation division (RND) family</th>
<th>Major facilitator superfamily (MFS)</th>
<th>Small multidrug resistance (SMR) family</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. baumannii AC1633</td>
<td>adeF, adeJ, adeK, adeN, adeF, adeG, adeH</td>
<td>amvA</td>
<td>abeS</td>
</tr>
<tr>
<td>pAC1633-1</td>
<td>adeR, adeS, adeA, adeB</td>
<td>tetA(39)</td>
<td></td>
</tr>
<tr>
<td>pAC1633-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pAC1633-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. nosocomialis AC1530</td>
<td>adeF, adeG, adeH</td>
<td>amvA, abaQ</td>
<td>abeS</td>
</tr>
<tr>
<td>pAC1530</td>
<td>adeR, adeS, adeA, adeB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Genes in the same colored font indicate that they are part of an operon.
downstream ORF encoding a protein of the SMI1/KNR4 family in pAC1530 at nt 164446 of pAC1633-1; this 1,192-bp fragment is flanked by p dif (XerD/XerC) recombination sites, more of which will be discussed in a later section. pAC1633-1 and pAC1530 belong to a group of diverse Acinetobacter plasmids that do not have an identifiable replication initiator or replicase (Rep) protein (42, 43).

Both pAC1633-1 and pAC1530 represent a repository of several antimicrobial resistance genes, including the blaNDM-1 and blaOXA-58 carbapenemase genes (Table 2). Three aminoglycoside resistance genes were found in both plasmids and all three encoded aminoglycoside-modifying enzymes. The aac(3)-IId group is a subclass of the AAC(3) enzymes that catalyze acetylation of the NH2 group at the 3-position of the aminoglycoside 2-deoxystreptamine nucleus and usually confers resistance to gentamicin, sisomicin, and fortimicin (44). Both A. baumannii AC1633 and A. nosocomialis AC1530 were gentamicin resistant, but their susceptibilities against sisomicin and fortimicin were not tested. The other two aminoglycoside resistance genes found in pAC1633-1 and pAC1530 encode the aminoglycoside O-phosphotransferases (APHs), aph(6)-Id and aph(3’)-Ib, and both genes confer resistance to streptomycin (44) (which was, however, not phenotypically tested in these Acinetobacter strains). Both genes were adjacent to each other and are flanked by IS elements, with ISAba1 upstream of aph(3’)-Ib and IS1006 downstream of aph(6)-Id (Fig. 2).

The sul2 gene that encodes dihydropteroate synthase, which confers sulfonamide resistance, is sandwiched between ISAba1 upstream and ISCfr1 downstream in both pAC1633-1 and pAC1530 (Fig. 2). In the chromosome of A. baumannii ATCC 19606, sul2 is associated with the ISCR2 element and is part of a large (36,157 bp) genomic island designated Gsul2 (45). The association of sul2 with the ISCR2 element was previously reported in the plasmid RSF1010 (46). However, in the GC1 A. baumannii RUH875, ISAba1 was detected upstream of sul2 and provided a promoter for its expression (47). This was observed in pAC1633-1 and pAC1530, except in these two plasmids, the ISCR2 element was truncated due to the insertion of the 1,617-bp ISCfr1.

The three aminoglycoside resistance genes, aac(3)-IId, aph(6)-Id and aph(3’)-Ib, along with the sul2 gene, were found to be in a 42,125-bp fragment in pAC1530 that was flanked by ISAba1 with characteristic 9-bp direct repeats of the target sequence in a typical composite transposon-like structure. This 42-kb fragment also included the blaOXA-58, msrE, mphE, and adeRS-adeABC resistance genes that were nested in a 29,670-bp fragment flanked by IS1006 (Fig. 3) and which is postulated to be derived from a smaller, separate plasmid via IS1006-mediated recombination/transposition. Comparative
sequence analysis subsequently indicated that the IS\textit{Aba1}-flanked composite transposon, designated Tn6948 by the Transposon Registry (48), is 14,750 bp and details of its structure and how the 42-kb region in pAC1530 (as well as pAC1633-1) came about will be presented in a later section of the manuscript.

The \textit{bla}_{\text{NDM-1}} gene is found within a 10,099-bp Tn125 composite transposon that was made up of a pair of flanking IS\textit{Aba125} elements and is a common genetic vehicle for the dissemination of \textit{bla}_{\text{NDM}} genes in \textit{Acinetobacter} spp. (22, 23, 49). One copy of IS\textit{Aba125} is 93 bp upstream of \textit{bla}_{\text{NDM-1}} and the presence of an outward-directing promoter at the terminal inverted repeat of IS\textit{Aba125} likely drives the expression of \textit{bla}_{\text{NDM-1}} (23, 50). In both pAC1633-1 and pAC1530, Tn125 was inserted into an unknown open reading frame, resulting in a 3-bp target site duplication ("ACG"), as has been previously reported for this transposon (23, 49, 50), although instances where a 4-bp duplication of the Tn125 site of insertion have been reported (51).

The \textit{bla}_{\text{OXA-58}} and \textit{msrE-mphE} resistance genes, and the toxin-antitoxin systems, are in \textit{pRdif} modules on pAC1633-1 and pAC1530. One of the intriguing features of \textit{Acinetobacter} plasmids is the presence of discrete modules flanked by conserved inverted repeats homologous to the \textit{XerC} and \textit{XerD} binding sites (\textit{dif} sites) separated by a 6-bp spacer, which are recombination targets for the \textit{XerC} and \textit{XerD} proteins (52–54). Since their initial discovery flanking a discrete module encoding the OXA-24 carbapenemase gene in the \textit{A. baumannii} pABVA01a plasmid (55), several of these designated \textit{pRdif} modules (named for plasmid \textit{dif}) which comprise a pair of inverted \textit{pRdif} sites surrounding a gene or several genes, have been described (54, 56). In pAC1633-1 and pAC1530, the region surrounding \textit{bla}_{\text{OXA-58}} is rich in \textit{pRdif} sites; 11 of the 14 \textit{pRdif} sites in pAC1530 were located within a 14,410-bp fragment that spanned nt 153566 to 167912 (Fig. 4). The \textit{bla}_{\text{OXA-58}} gene itself is flanked by \textit{IS} elements (a partial 427-bp \textit{ISaba3} upstream of \textit{bla}_{\text{OXA-58}} and full copies of \textit{ISaba11} and \textit{ISaba3} immediately downstream), which are in turn flanked by a pair of inverted \textit{pRdif} sites, an arrangement that has been previously reported for the \textit{A. johnsonii}-encoded plasmid pXBB1-9, but without the presence of \textit{ISaba11} (57). In pAC1633-1/pAC1530, insertion of \textit{ISaba11} led to a characteristic 5-bp direct repeat (ATTTA) of the target sequence. In some \textit{Acinetobacter}, a full \textit{ISaba3} or \textit{ISaba3}-like element is found upstream of \textit{bla}_{\text{OXA-58}}, while in other instances this upstream \textit{ISaba3} is disrupted by other \textit{IS} elements (53, 58–60).

FIG 3 Linear map of the IS\textit{Aba1}-flanked composite transposon Tn6948 in the \textit{A. pittii} AP882-derived plasmid pNDM-1_AP882 in comparison with the transposon in pAC1530. Arrows indicate extents and directions of genes and ORFs. Insertion sequence (IS) elements are depicted as blue-colored boxes with lighter blue arrows showing the directions of the transposase genes. IS\textit{Aba1} that flanks the composite transposon is depicted in darker shades of blue. The 9-bp direct repeat sequences that flank the composite transposon are shown in red fonts. Antimicrobial resistance genes are shown as yellow arrows; brown arrows are toxin-antitoxin systems; purple arrows are putative DNA recombination genes; other colored arrows are genes with known homologs; white arrows are ORFs encoding hypothetical proteins. Gray-shaded areas indicate regions with >99% nucleotide sequence identities. The linear map of pNDM-1_AP882 covers nt 146571 to 146597 and continues with nt 1 to 14741 of accession no. CP014478, whereas the map of pAC1530 covers nt 147515 to 173972 and continues with nt 1 to 15685 of accession no. CP045561.1. Note that plasmid pAC1633-1 (accession no. CP059301) is almost identical to pAC1530 within this region except for the omission of the \textit{relBE} toxin-antitoxin system and its downstream ORF, as detailed in the text and in Fig. 2.
A pair of inversely oriented pdif sites was also found to flank the msrE and mphpE macrolide resistance genes in pAC1633-1 and pAC1530 (Fig. 4), leading to the formation of a 2,950-bp macrolide-resistance pdif module, as had been reported previously in other Acinetobacter plasmids (53). This msrE-mphpE module has always been found adjacent to a higBA TA pdif module (53), and this was also the case in pAC1633-1 and pAC1530.

Intriguingly, all known TA systems detected in pAC1633-1 and pAC1530 (higBA-1, brnTA, and higBA-2) were found within this region and they were each flanked by a pair of inverted pdif sites. As mentioned earlier, one of the differences between pAC1633-1 and pAC1530 is the addition of a relBE TA system and an ORF encoding a
protein of the SMI1/KNR4 family in pAC1530, upstream of *higBA-2* (Fig. 4). The *relBE* genes and the genes encoding SMI1/KNR4 protein are also *pdf* modules, as they are each flanked by a pair of inverted *pdf* sites. A closer examination of the *pdf* (XerD/C) sequences showed that in pAC1633-1, the *pdf* (XerD/C) sequences upstream of *higBA-2* are a hybrid of the *pdf* (XerD/C) sequences that flanked the *relBE-SMI1/KNR4* module in pAC1633-1, i.e., the sequences of the XerD site are identical to the sequences found upstream of *relBE*, while the 6-bp spacer and the XerC site sequences are identical to the sequences upstream of *higBA-2* in pAC1633-1 (Fig. 4). This suggests the *relBE-SMI1/KNR4 pdf* module could have been deleted from pAC1530 in pAC1633-1 via a Xer-mediated recombination event.

Another Xer-related rearrangement could be seen when comparing the sequences of pAC1633-1 and pAC1530 with their closest plasmid relative, pOXA-58-AP882, wherein the *brnTA* TA *pdf* module was found to be in inverted orientation. The orientation of *brnTA* in pOXA-58-AP882 is, however, the same in pXBB1-9 (Fig. 4). Interestingly, the XerD and the 6-bp spacer sequences of the flanking *pdf* modules for *brnTA* are identical when comparing pAC1633-1/pAC1530 with pOXA-58-AP882, except the XerC sequences are inverted (pAC1633-1/pAC1530: TTATGCGAAGT; pOXA-58-AP882: ACTTCGCATAA) (Fig. 4). Currently, genome sequencing data strongly support the likelihood that *pdf* modules are mobile, although, to our knowledge, there has yet to be any definite experimental evidence offered or mechanism of mobility elucidated (52). Deletions and inversions of *Acinetobacter pdf* modules have been hinted at (52, 56), and here we show sequence evidence that these do occur.

pAC1633-1/pAC1530 is likely a hybrid of two plasmids with the cointegration mediated by IS1006. BLASTN analysis of pAC1633-1 and pAC1530 showed they are most similar in sequence to two plasmids found in *Acinetobacter pittii* AP882 designated pNDM-1_AP882 (accession no. CP014478) and pOXA-58_AP882 (accession no. CP014479). Notably, *A. pittii* AP882 was isolated from Peninsular Malaysia in 2014 but from a different state (Perak) (61) compared to AC1633-1 and AC1530 (isolated from Terengganu in 2016 and 2015, respectively). When comparing the 146,597-bp pNDM-1_AP882 with pAC1530 and pAC1633-1, pNDM-1_AP882 is nearly identical with pAC1530/pAC1633-1 except for a 1,940-bp region adjacent to IS1006. This region contains a 1,472-bp IS-like sequence (nt 4480 to 1472) that encodes two transposases characteristic of the IS3 family flanked by 21/22-bp imperfect inverted repeats and a 5-bp direct repeat (ACCTG) of the target sequence (Fig. S1). Further analysis of pNDM-1_AP882 led to the discovery of a 14,750-bp composite transposon designated Tn6948, formed by flanking ISaba1 sequences with a 9-bp target site duplication (TTAAAAATT) that is characteristic of this IS element (Fig. 3). The target site duplication is only found for the entire transposon structure but not for each individual ISaba1 element, thus suggesting this is likely an active transposon. Tn6948 harbors the sul2 sulfonamide resistance gene and the aminoglycoside resistance genes *aph(3’)-lb, aph(6’)-ld*, and *aac(3’)-ld*. Tn6948 has an overall GC content of 50.6% compared to 38 to 39% for the surrounding genes, thus supporting its possible non-*Acinetobacter* origin.

When comparing the 36,862-bp pOXA-58_AP882 plasmid with pAC1530 and pAC1633-1, a 29,671-bp fragment of pOXA-58_AP882 was found to be identical to pAC1530/pAC1633-1, and this region, which comprises the resistance genes *bla*_{OXA-58}, *msrE, mphE*, and *adeABC-adeR5*, is flanked by two copies of IS1006 (Fig. 5A). The remaining 7,191 bp of pOXA-58_AP882 that was absent in pAC1530/pAC1633-1 encodes 10 ORFs and this includes ORFs that encode a MobA/L mobilization protein, a Rep3 family *Acinetobacter* replicase of the GR12 group (62), a hypothetical protein with a helix-turn-helix motif that had previously been misannotated as RepA (43), a protein of the RelE/ParE toxin family and, downstream of it, an ORF that encodes another helix-turn-helix protein but of the Xre family (Fig. S1). The putative RelE/ParE family toxin in this region of pOXA-58_AP882 shared only 27% amino acid sequence identity with the RelE toxin of the previous RelBE TA pair found within this plasmid as well as in pAC1530 (but which was absent in pAC1633-1). In comparing the IS1006 sequences in these plasmids, it was found that the two IS1006 copies in pOXA-58_AP882 were
identical with the two copies in pAC1530 and pAC1633-1. However, the solitary IS\textsubscript{1006} copy in pNDM-1_AP882 had a single nucleotide change in which T replaced C at nt 175 of the 819-bp IS\textsubscript{1006}.

It is thus tempting to speculate that the 29,671-bp region of pOXA-58_AP882 that contained \textit{bla}_{OXA-58} formed a composite transposon-like structure flanked by two copies of IS\textsubscript{1006} and that this region could have transposed or recombined with pNDM-1_AP882 at its single IS\textsubscript{1006} copy residing within Tn\textsubscript{6948}. This transposition or recombination might have resulted in a predecessor for plasmids pAC1530 and pAC1633-1, which contain both the \textit{bla}_{NDM-1} and \textit{bla}_{OXA-58} genes in a single plasmid that has two copies of IS\textsubscript{1006} (Fig. 5B).

IS\textsubscript{1006} belongs to the large IS\textsubscript{6}/IS\textsubscript{26} family of IS elements (63) and this family, in particular IS\textsubscript{26}, has been known to mediate the formation of cointegrates between two DNA molecules, with the donor molecule harboring IS\textsubscript{26} (64). However, this route, designated "replicative" or "copy-in," usually leads to the formation of an 8-bp target site duplication for the IS\textsubscript{26} and inserts at random sites (63). Here, no target site duplication could be detected in pAC1530, pAC1633-1, or even pOXA-58_AP882 at the ends of the IS\textsubscript{1006}-flanked region. Nevertheless, IS\textsubscript{26} was recently demonstrated to perform a unique transposase-dependent reaction when both donor and target molecules carry a copy of IS\textsubscript{26}. This reaction, designated "targeted conservative," is targeted, occurring at one or the other end of the two IS\textsubscript{26} elements, and with the IS element not duplicated and a target site duplication not generated (65). Cointegration by the targeted conservative route was found to
be the preferred reaction if two copies of IS26 in two different DNA molecules are available (65, 66). Based on sequence analysis alone, it is difficult to ascertain the mechanism by which the predecessor cointegrate plasmid for pAC1530 and pAC1633-1 was formed, i.e., whether it was through the targeted conservative route since both pOXA-58_AP882 and pNDM-1_AP882 harbored IS1006, or by homologous recombination via IS1006, or even by classical transposition—as the two copies of IS1006 that flanked the 29,671-bp blaOXA-58 fragment do form a composite transposon structure, albeit without the characteristic target site duplications at its termini.

Transmissibility of pAC1530 and pAC1633-1. The fact that pAC1530 and pAC1633-1 were nearly identical, large (>170 kb) plasmids that were isolated from two different Acinetobacter species in two different years (A. nosocomialis AC1530 from 2015 and A. baumannii AC1633 from 2016) but from the same hospital is suggestive of plasmid transmissibility. Sequence analysis also indicated the presence of several conjugative transfer-related genes, most of which share between 50 to 70% amino acid sequence identities with the corresponding translated proteins of the conjugative plasmid pA297-3 from A. baumannii isolate A297 (67) (Table 4). The conjugative transfer genes of pAC1530 and pAC1633-1 were broadly distributed in two large regions of the plasmids, as they were in pA297-3. The order of the transfer genes in both regions in pAC1530 and pAC1633-1 (designated regions 1 and 2) was identical with the order in pA297-3, despite that the nucleotide sequence identities were lower than 65% in some parts of these two regions (Fig. 6). However, in both pAC1530 and pAC1633-1, region

TABLE 4 Conjugative transfer-related genes identified in pAC1530 and pAC1633-1 compared to their corresponding genes in pA297-3

<table>
<thead>
<tr>
<th>Gene</th>
<th>Region 1</th>
<th>Region 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>Product size<sub>pAC1530<sup>a</sup> (aa)**</td>
<td>Product size<sub>pA297-3<sup>a</sup> (aa)**</td>
</tr>
<tr>
<td>Region 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traW</td>
<td>378</td>
<td>377</td>
</tr>
<tr>
<td>traY</td>
<td>902</td>
<td>882</td>
</tr>
<tr>
<td>trbA</td>
<td>445</td>
<td>456</td>
</tr>
<tr>
<td>traJ</td>
<td>408</td>
<td>429</td>
</tr>
<tr>
<td>trl</td>
<td>277</td>
<td>272</td>
</tr>
<tr>
<td>traH</td>
<td>156</td>
<td>156</td>
</tr>
<tr>
<td>traM</td>
<td>232</td>
<td>238</td>
</tr>
<tr>
<td>traN</td>
<td>367</td>
<td>376</td>
</tr>
<tr>
<td>traO</td>
<td>541</td>
<td>543</td>
</tr>
<tr>
<td>icm<sup>f</sup></td>
<td>255</td>
<td>252</td>
</tr>
<tr>
<td>traU</td>
<td>1088</td>
<td>1090</td>
</tr>
<tr>
<td>trbC</td>
<td>913</td>
<td>912</td>
</tr>
<tr>
<td>Region 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>traC</td>
<td>632</td>
<td>616</td>
</tr>
<tr>
<td>trbN<sup>f</sup></td>
<td>272</td>
<td>275</td>
</tr>
<tr>
<td>traB</td>
<td>750</td>
<td>753</td>
</tr>
</tbody>
</table>

^aGenBank accession no. CP045561.1.
^bGenBank accession no. KU744946.1 (Hamidian et al., 2016) (67).
^cPredicted function as listed in Hamidian et al. (2016) (67) and Christie (2016) (91).
^dNumbers in parentheses indicate amino acid identities.
^ficm^f as annotated by PROKKA; shared 60% amino acid sequence identity with HPG66_RS00900 of pA297-3, which was annotated as hypothetical; low sequence identities (42%; 18/43) with icm^f of Legionella pneumophila (accession no. CAH11669.1).
^ftrbN^f was annotated by Hamidian et al. (2016) (67) for pA297-3 and pD46-4 (Nigro and Hall, 2017) (70); no detectable similarities with other conjugal proteins.
which spans from \(\text{traW} \) to \(\text{trbC} \), was interrupted by a 42-kb fragment encompassing the IS\(_\text{Aba1} \)-flanked composite transposon Tn\(_6948 \) and, nested within it, the 29-kb IS\(_\text{1006} \)-flanked fragment derived from pOXA-58\(_\text{AP882} \) (Fig. 6). Conjugation assays were performed using the carbapenem resistant parental hosts, \(A. \text{baumannii AC1633} \) and \(A. \text{nosocomialis AC1530} \), as donor strains and, as recipients, carbapenem susceptible \(A. \text{baumannii ATCC 19606} \) and \(A. \text{baumannii AC1529} \) clinical isolate that were induced to sodium azide resistance with MIC values of 300 \(\mu \text{g/ml} \). Despite repeated attempts with established conjugation assay protocols (67, 68) and using different ratios of donor to recipient cells, no transconjugants were obtained that were able to grow on the selection plates (LB agar supplemented with 10 \(\mu \text{g/ml} \) imipenem and 300 \(\mu \text{g/ml} \) sodium azide). Thus, we were unable to provide direct laboratory experimental evidence that pAC1530 and pAC1633-1 were transmissible. The 200-kb pA297-3 plasmid from \(A. \text{baumannii A297} \), which encodes the sul2 sulfonamide and strAB streptomycin resistance genes, was found to transfer sulfonamide and streptomycin resistance to a rifampin-resistant \(A. \text{baumannii ATCC 17974} \) strain at a high frequency of 7.20\(\times 10^{-2} \) transconjugants/donor (67). However, two other plasmids, pD4 and pD46-4, which shared the transfer regions with pA297-3, were found to be nontransmissible (69, 70). In the case of pD4, an IS\(_\text{Aba25} \)-like element was inserted into the DNA primase gene downstream of \(\text{traW} \), indicating the possibility that this gene could be involved in conjugative transfer (69). However, for pD46-4, no such IS or other genetic elements were found to have interrupted the conjugative transfer-related genes. Also, no SNPs

1. which spans from \(\text{traW} \) to \(\text{trbC} \), was interrupted by a 42-kb fragment encompassing the IS\(_\text{Aba1} \)-flanked composite transposon Tn\(_6948 \) and, nested within it, the 29-kb IS\(_\text{1006} \)-flanked fragment derived from pOXA-58\(_\text{AP882} \) (Fig. 6). Conjugation assays were performed using the carbapenem resistant parental hosts, \(A. \text{baumannii AC1633} \) and \(A. \text{nosocomialis AC1530} \), as donor strains and, as recipients, carbapenem susceptible \(A. \text{baumannii ATCC 19606} \) and \(A. \text{baumannii AC1529} \) clinical isolate that were induced to sodium azide resistance with MIC values of >300 \(\mu \text{g/ml} \). Despite repeated attempts with established conjugation assay protocols (67, 68) and using different ratios of donor to recipient cells, no transconjugants were obtained that were able to grow on the selection plates (LB agar supplemented with 10 \(\mu \text{g/ml} \) imipenem and 300 \(\mu \text{g/ml} \) sodium azide). Thus, we were unable to provide direct laboratory experimental evidence that pAC1530 and pAC1633-1 were transmissible. The 200-kb pA297-3 plasmid from \(A. \text{baumannii A297} \), which encodes the sul2 sulfonamide and strAB streptomycin resistance genes, was found to transfer sulfonamide and streptomycin resistance to a rifampin-resistant \(A. \text{baumannii ATCC 17974} \) strain at a high frequency of 7.20\(\times 10^{-2} \) transconjugants/donor (67). However, two other plasmids, pD4 and pD46-4, which shared the transfer regions with pA297-3, were found to be nontransmissible (69, 70). In the case of pD4, an IS\(_\text{Aba25} \)-like element was inserted into the DNA primase gene downstream of \(\text{traW} \), indicating the possibility that this gene could be involved in conjugative transfer (69). However, for pD46-4, no such IS or other genetic elements were found to have interrupted the conjugative transfer-related genes. Also, no SNPs

![Linearized map of the two conjugative regions of pAC1530 compared to pA297-3. (A) Region 1; map shows nt 137720 to 173972 and continues with 1 to 57600 of pAC1530 (numbered as in accession no. CP045561.1) and the reverse complement of nt 169947 to 200833, continues with 1 to 25440 of pA297-3 (numbered as in accession no. KU744946.1). (B) Region 2; map depicts nt 80481 to 98080 of pAC1530 and the reverse complement of nt 76001 to 92455 of pA297-3. Arrows indicate the extents and directions of genes and ORFs with identified conjugative transfer genes depicted as dark green arrows. Lime green arrows are the plasmid partitioning genes parA and parB. IS elements and the miniature inverted-repeat transposable element (MITE) identified in pA297-3 (67) are depicted as dark blue boxes with their encoded transposase shown as lighter blue arrows. Antibiotic resistance genes in pAC1530 are indicated as yellow arrows while toxin-antitoxin genes are shown as brown arrows. Other identified genes are in purple and pink arrows, with white arrows indicating ORFs encoding hypothetical proteins. The IS\(_\text{Aba1} \)-flanked Tn\(_6948 \) is indicated; note that in pAC1530 and pAC1633-1, Tn\(_6948 \) is interrupted by the IS\(_\text{1006} \)-flanked region that contains antimicrobial resistance genes such as \(\text{blaOXA-58} \), sul2, msrE, and mphE (see Fig. 3 and text). Gray-shaded areas indicate regions with DNA sequence identities as indicated by the bars at the bottom right of each figure. Note that although the figure depicts only pAC1530, pAC1633-1 is nearly identical to pAC1530 in Region 1 except for an insertion of IS\(_\text{Aba11} \) in the ORF upstream of \(\text{traM} \) and deletion of the \text{relBE pdif} \) module (see Fig. 2 and text).
were detected in the transfer genes that might have led to a frameshift or a premature stop codon within these genes (70). The reason for the apparent nontransmissibility of pD46-4 compared to pA297-3 was not known (70). As for pAC1530 and pAC1633-1, their apparent nontransmissibility could be attributed to the insertion of the 42-kb fragment containing Tn6948 and the IS1006-flanked resistance region from pOXA-58_AP882 into the conjugative transfer region 1. However, the insertion of Tn6948 at the same site was already present in pNDM-1_AP882, although, here the insertion was only 14.2 kb (Fig. 3). There was also no experimental evidence of the transmissibility of pNDM-1_AP882, although in this case the recipient strain used was an azide-resistant derivative of E. coli J53 (61). Nevertheless, the genomic sequence evidence presented here strongly infers the transmissible nature of pNDM-1_AP882 and, by extension, pAC1530 and pAC1633-1, as these three highly related plasmids were found in three different species of Acinetobacter. Perhaps the rate of conjugative transfer for these plasmids was exceptionally low and thus below detectable limits, in stark contrast to what was reported for pA297-3 in which the conjugative transfer region 1 was uninterrupted. Alternatively, successful conjugative transfer of these plasmids may require certain environmental or media conditions that were not met when the experiments were conducted in the laboratory using established protocols. Further work is clearly needed to resolve this transmissibility conundrum for pAC1530 and pAC1633-1.

The tetA(39) tetracycline resistance gene in pAC1633-2 is within a pdif module. Plasmid pAC1633-2 is 12,651 bp and encodes a Rep3 family replicase of the Acinetobacter GR8/GR23 group that was preceded by four 22-bp iterons characteristic of Rep3 family plasmids (42, 43). pAC1633-2 also encodes a tetA(39) tetracycline resistance gene which was adjacent to and divergently transcribed from a tetR(39) regulatory gene (Fig. 7). This 2,001-bp fragment is identical with the tetAR(39) genes that made up a pdif module in plasmids pS30-1, pRCH52-1, and pAB1-H8 (53). However, the pdif sites that flank this tetAR(39) region in pAC1633-2 differed from those in pS30-1, pRCH52-1, and pAB1-H8 at the 6-bp spacer and the XerC-recognition site (Fig. 7). Another pdif module that was detected in pAC1633-2 encodes the vapBC toxin-antitoxin system, which was in an inverted orientation compared with plasmid pA1296_2 from A. baumannii A1296 (accession no. CP018334) (Fig. 7).

AC1633-2 also harbors a mobA/L gene that encodes a relaxase of the MOBQ family, indicating the possibility of the plasmid being mobilized should a suitable conjugative plasmid be present in the host cell. Since AC1633 also harbored the potentially conjugative pAC1633-1 plasmid, the ability of pAC1633-1 to mobilize pAC1633-2 was tested in conjugation experiments by selecting for transconjugants that exhibit tetracycline resistance in addition to azide resistance. Despite repeated experiments, no such transconjugants were detected, indicating that pAC1633-1 was unable to mobilize pAC1633-2. This, however, does not rule out the possibility that pAC1633-2 could be mobilized by a different type of conjugative plasmid to pAC1633-1.

Two other plasmids in A. baumannii AC1633, pAC1633-3 and pAC1633-4, are cryptic. Two other smaller plasmids are found in A. baumannii AC1633, the 9,950-bp pAC1633-3 and the 5,210-bp pAC1633-4. Neither plasmid carries any antimicrobial or metal resistance genes, nor any genes that could confer a specific phenotype to their host, and are thus characterized as cryptic plasmids. Both plasmids encode replicases of the Rep3 superfamily that are common in Acinetobacter plasmids, with pAC1633-3 belonging to the GR8 group where pAC1633-4 belongs to the GR7 group (42, 43). pAC1633-3 and pAC1633-4 could potentially be mobilizable, as they carry mobA/L genes of the MOB8 family and pAC1633-4 also carries a mobS-like gene. However, in the absence of any selectable marker, we were unable to determine if these two plasmids could be mobilized by pAC1633-1.

Four pdif sites were detected in pAC1633-3 but none in pAC1633-4. Interestingly, one of the pdif modules in pAC1633-3 is 464 bp, encodes a putative protein of the SMI1/KNR4 family, and is identical with the pdif module that was found downstream of the relBE pdif module in the A. nosocomialis AC1530-derived pAC1530. This SMI1/KNR4
module, along with the \textit{relBE} module, is absent in \textit{pAC1633-1} and is one of the features that differentiates \textit{pAC1530} from \textit{pAC1633-1}. The other \textit{p\textit{dif}} module in \textit{pAC1633-3} is 4,331 bp and encodes a putative regulatory protein of the Xre family, a \textit{hipA}-like toxin, and a 602-amino acid protein of the DEAD/DEAH box family of helicases.

In summary, complete genome sequencing of carbapenem-resistant \textit{A. baumannii AC1633} and \textit{A. nosocomialis AC1530} isolates led to the discovery of a ca. 170-kb plasmid that encodes the NDM-1 and OXA-58 carbapenemases along with several other resistance determinants and was likely responsible for the MDR status of these two clinical isolates. The \textit{A. baumannii AC1633}-derived \textit{pAC1633-1} and the \textit{A. nosocomialis AC1530}-derived \textit{pAC1530} were nearly identical except for the insertion and deletion of IS elements and a \textit{p\textit{dif}} module. Both plasmids were a patchwork of multiple mobile genetic elements, with the \textit{bla}_{NDM-1} gene residing in a \textit{Tn125} composite transposon while \textit{bla}_{OXA-58} was flanked by IS elements nested within a \textit{p\textit{dif}} module. The \textit{mstE-mphE}
macrolide resistance genes were also located within a pdif module, as were several toxin-antitoxin genes, highlighting the importance of these Xer recombination-dependent modules as one of the drivers of plasmid diversity in Acinetobacter. Comparative sequence analysis indicated that pAC1633-1/pAC1530 is likely a cointegrate of two plasmids which separately encode the blaNDM-1, and \textit{blaoxa-58} genes in an \textit{A. pittii} clinical isolate, and that was formed via an IS1006-mediated recombination or transposition event. Horizontal transmission of pAC1633-1/pAC1530 was inferred from the discovery of the almost identical plasmid in two different species of \textit{Acinetobacter} that cohabor the NDM-1 and OXA-58 carbapenemases in this and other recent reports (51, 57) warrants monitoring and assessment of the risk of spread of these plasmids to susceptible strains, particularly in healthcare settings.

MATERIALS AND METHODS

Ethical approval, bacterial isolates, and antimicrobial susceptibility profiles. Ethical approval for this study was obtained from the Malaysian Ministry of Health’s National Medical Research Register (approval no. NMRR-14-1650-23625-IIR). \textit{A. baumannii} AC1633 and \textit{A. nosocomialis} AC1530 were isolated from Hospital Sultanah Nur Zahirah, Kuala Terengganu, Malaysia in 2016 and 2015, respectively. Species identification of both isolates was performed by sequencing of the rpoB gene as previously described (13, 71). Antimicrobial susceptibilities of both isolates were determined using a panel of 22 antibiotics recommended for \textit{Acinetobacter} spp. (26) and by disk diffusion (Oxoid Ltd., Basingstoke, UK) on Mueller-Hinton (MH) agar, except for colistin and polymyxin B, which were determined by obtaining the MIC values by the agar diffusion method (25). Carbapenem resistance was validated by determining the MIC values for imipenem, meropenem and doripenem using M.I.C. Evaluator strips (Oxoid Ltd., Basingstoke, UK). Results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) guidelines (72). Production of metallo-\beta-lactamases was determined using the Etest MBL kit (bioMérieux, La Balme-les-Grottes, France).

DNA isolation, whole-genome sequencing, and sequence analyses. Genomic DNA for whole-genome sequencing was prepared using the Geneaid Presto mini gDNA bacteria kit (Geneaid, Taiphe, Taiwan) following the manufacturer’s recommended protocol and the extracted DNA quality was evaluated using a Qubit 2.0 fluorometer (Life Technologies, Carlsbad, CA). Genome sequencing was performed on the Illumina NextSeq (Illumina Inc., San Diego, CA) and PacBio RSII (PacBio, Menlo Park, CA) platforms by a commercial service provider (Novogene, Beijing, China) and hybrid assembly was carried out using SPAdes (version 3.11.1) (73). Gene prediction for the assembled genomes was performed with PROKKA (74) with annotation achieved using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (75). Multilocus sequence typing (MLST) in the Institut Pasteur (76) and Oxford (77) schemes was performed via the \textit{A. baumannii} MLST database (https://pubmlst.org/abaumannii/) (33). Pan genome analysis for \textit{A. baumannii} AC1633, \textit{A. nosocomialis} AC1530, and related global \textit{A. baumannii} and \textit{A. nosocomialis} isolates (as listed in Table S1) was determined using ROARY, with the core genomes identified using the criteria of amino acid sequence identities of >95% (78) and presence in 99% of genomes. The derived core genome alignments for \textit{A. baumannii} and \textit{A. nosocomialis} were then used to infer maximum-likelihood (ML) trees using FastTree (79) with 100 bootstraps under the GTR time-reversible model. The resulting \textit{A. baumannii} and \textit{A. nosocomialis} phylogenetic trees were then visualized using iTOL v5 (https://itol.embl.de/) (80). The \textit{A. baumannii} and \textit{A. nosocomialis} genomes chosen for analyses were reference genomes that were either complete and/or have been published. For \textit{A. baumannii}, unpublished genomes of isolates originating from Malaysia were also included in the analyses.

Antibiotic resistance genes. Antibiotic resistance genes were identified using ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/) (81) and the Comprehensive Antibiotic Resistance Database (CARD) (https://card.mcmaster.ca/) (82), whereas iSFinder (https://isfinder.ibiotek.fr/) (41) was used to identify insertion sequences. Toxin-antitoxin systems were identified using the toxin-antitoxin database TADB 2.0 (https://bioinfo.mml.sjtu.edu.cn/TADB2/index.php) (83), and putative conjugative transfer genes were identified using SeCreT4 (https://db-mml.sjtu.edu.cn/SeCreT4/) (84). All plasmid sequences were manually inspected using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) to validate the genes/open reading frames (ORFs) that were predicted by the annotation and other programs. Pfam searches (85) and the NCBI Conserved Domain Database (CDD) (86) were also used to identify possible protein functions. Plasmids similar to pAC1530 and pAC1633-1 were searched by BLASTN (at https://blast.ncbi.nlm.nih.gov/Blast.cgi) using the nonredundant (nr) nucleotide collection and initially optimized for highly similar sequences (MegabLAST). Regions of high sequence identities with multiple hits (such as the \textit{blaNDM-1} and \textit{blaOXA-58} modules) were then subsequently omitted from subsequent searches, which were optimized for more dissimilar sequences (discontiguous MegabLAST) and somewhat similar sequences (BLASTN). The presence of \textit{pdf} sites in pAC1530, pAC1633-1, and related plasmids was determined by BLASTN screening using known XerC/XerD and XerD/XerC sites in published reports (52–54) and manually examining hits that were 75 to 80% identical in sequence (54).

SnapGene 5.1.5 (GSL Biotech LLC., San Diego, CA) was used to visualize and manipulate the
sequences studied. Figures were drawn to scale using EasyFig 2.2.3 (http://mjsull.github.io/Easyfig/) (87) and CGView (http://rothard.afns.ualberta.ca/cgview_server/) (88).

Conjugation assays. Conjugation assays were carried out to investigate the transmissibility of pAC1530 and pAC1633-1 from their respective carbapenem-resistant natural hosts, *A. nosocomialis* AC1530 and *A. baumannii* AC1633, to the appropriate susceptible isolates, *A. baumannii* ATCC 19606 and *A. baumannii* AC1529. *A. baumannii* ATCC 19606 is the type strain of *A. baumannii* that has been widely used in various studies, is resistant to sulfonamides due to the presence of the sul2 gene in its chromosome, but remains susceptible to a wide range of other antibiotics (45, 89), including the carbapenems. *A. baumannii* AC1529 was isolated from the blood of a 59-year-old male patient in the emergency ward of Hospital Sultanah Nur Zahirah in 2015 and its identity was confirmed by rpoB sequencing (71). AC1529 showed intermediate resistance to cefotaxime and ceftriaxone but was susceptible to the penems. *A. baumannii* ATCC 19606 and *A. baumannii* AC1529 were selected for induction to azide resistance to be used as recipient strains in the conjugation assays. Spontaneous mutation of both *A. baumannii* strains to sodium azide resistance was performed by continuous exposure to increasing concentrations of sodium azide, as described by Leungtongkam et al. (90).

A. baumannii ATCC 19606 and *A. baumannii* AC1529 isolates with sodium azide MIC values of >300 μg/ml were used as recipients, whereas *A. baumannii* AC1633 and *A. nosocomialis* AC1530 were used as donors in four separate conjugation experiments. Equal amounts of overnight cultures of the donor and recipient cells were mixed and incubated at 37°C on Luria-Bertani (LB) agar plates overnight. Cells were resuspended and diluted in 0.9% NaCl and selected on LB agar plates supplemented with 300 μg/ml sodium azide and 10 μg/ml imipenem. Conjugation assays were also repeated with different ratios of donor to recipient cells (1:2, 1:3, 2:1, and 3:1). To investigate if the tetA(harboring plasmid pAC1633-2 could be mobilized by pAC1633-1 in *A. baumannii* AC1633, conjugation experiments involving AC1633 as donor were also plated on LB agar plates supplemented with 300 μg/ml sodium azide and 4 μg/ml tetracycline.

Data availability. The complete sequence of the *A. baumannii* AC1633 chromosome was deposited in GenBank under accession no. CP059300, whereas its four plasmids were deposited under the following accession numbers: pAC1633-1 (CP059301), pAC1633-2 (CP059303), pAC1633-3 (CP059304), and pAC1633-4 (CP059302). The *A. nosocomialis* AC1530 chromosomal sequence was deposited under accession no. CP045560.1, whereas its five plasmids were deposited under accession no. CP045561.1.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

FIG S1, TIF file, 2.8 MB. **TABLE S1**, DOCX file, 0.1 MB.

ACKNOWLEDGMENTS

We thank Fatimah Haslinda Abdullah and Norlela Othman of Hospital Sultanah Nur Zahirah, Kuala Terengganu, for supplying the AC1530 and AC1633 isolates used in this study.

This study was funded by provisions of the following grants: University Laboratory Materials Grant UniSZA/LABMAT/2018/09 from Universiti Sultan Zainal Abidin and Fundamental Research Grant Scheme FRGS/1/2017/SKK11/UNISZA/02/4 from the Malaysian Ministry of Higher Education.

REFERENCES

13. mahomet Rani F, Alattraqchi AG, Cleary DW, Clarke SC, Yeo CC. 2017. Acinetobacter baumannii infections in Malaysia: a review of anti-
20. Krahn T, Wiberg D, Maus I, Winkler A, Pühler A, Poirel L, Schlüter A. 2015. Complete genome sequence of Acinetobacter baumannii CIP 70.10, a sus-
23. Krahn T, Wiberg D, Maus I, Winkler A, Pühler A, Poirel L, Schlüter A. 2015. Complete genome sequence of Acinetobacter baumannii CIP 70.10, a sus-
27. Krahn T, Wiberg D, Maus I, Winkler A, Pühler A, Poirel L, Schlüter A. 2015. Complete genome sequence of Acinetobacter baumannii CIP 70.10, a sus-
32. Lean S-S, Covurlan P, Pribirníc P, Houseman D. 2018. In vivo selection of reduced susceptibility to carbapenems in Acinetobacter bauman-
34. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applica-

