Complete Genome Sequence of the Naphthalene-Degrading Bacterium Pseudomonas stutzeri AN10 (CCUG 29243)

Isabel Brunet-Galmés,a Antonio Busquets,a Arantxa Peña,a Margarita Gomila,b Balbina Nogales,a Elena García-Valdés,a,c Jorge Lalucat,a,b Antonio Bennasar,a,b and Rafael Boschb

Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma de Mallorca, Spain; Microbiologia, Hospital Son Llàtzer, Palma de Mallorca, Spain; Institut Mediterrani d’Estudis Avançats (IMEDEA, CSIC-UIB), Esporles, Spain; and Institut Universitari en Ciències de la Salut (IUNICS, UIB), Palma de Mallorca, Spain

Pseudomonas stutzeri AN10 (CCUG 29243) is a naphthalene-degrading strain that was isolated from polluted marine sediments of the West Mediterranean Sea (9, 14). The genes involved in naphthalene degradation (nahAabbcAdEFBCED, nahGTHIN LOMKJ, nahW, and nahR) have been characterized (1–3, 10). Those operons are flanked by entire copies and remnants of insertion sequences (IS). The transposition of two of them (ISps9, ISppu12) was highly induced by a novel stimulus widespread in Pseudomonas: conjugative interaction (5, 6).

The genome sequence of *P. stutzeri* AN10 was generated using Celera Assembler version 7.0 (11) from 322,269 8-kb mate pair reads (23-fold coverage) obtained with the 454 GS FLX Titanium system. Gaps were closed using the assembly information obtained with the Velvet program (18) from 4,285,714 500-bp paired-end reads (100-fold coverage) generated with Illumina HiSeq 2000 platform. A single scaffold of 4,709,064 bp in length was obtained. Contig order in the scaffold was confirmed by PCR with specific primers. Genome annotation and analysis was done using the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP; http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html), the KEGG Automatic Annotation Server (KAAS) (12), the IS-Finder (15), and the PhiSiGns database (8).

P. stutzeri AN10 is the first strain of genomovar 3 of the species to be sequenced. Its genome has a G+C content of 62.7%, shows a coding density of 88.7%, and contains 4,300 coding sequences (CDSs), 4 16S rRNA operons, and 62 tRNA genes.

Putative genes that cover all major metabolic pathways were found, as expected for heterotrophic bacteria. As in other *P. stutzeri* strains (4, 13, 16, 17), the complete set of genes for denitrification, starch metabolism, flagellum synthesis, and bacterial chemotaxis was found. The genome also contains more than 150 genes related to ABC transporters and two-component systems. Other transport systems, such as type II, IV, and VI secretion systems, and the Sec pathway were also detected.

Genome analysis revealed the presence of at least 44 plausible transposase-encoding genes, belonging to 10 different IS families. Seventy percent of them were found in a 400-kb region of the chromosome (coordinates 1,310,557 to 1,744,602), thus suggesting a hot spot for transposition. All previously characterized *nah* genes (1–3) are also located in this region. Furthermore, all genetic determinants needed for the degradation of benzoate were also found beside this IS-enriched region. However, growth on benzoate was not observed in previous laboratory experiments (9, 14).

Twenty-one integrase-like-encoding genes have also been annotated. Seven of them are located in the 400-kb region previously mentioned. Among those, the gene product AFM32726 is homologous (49% identity, 67% similarity) to the well-characterized integrase of the InPstQ integron of *P. stutzeri* strain Q (7). Finally, a putative prophage sequence (42.7 kb in length) was also detected within the 400-kb region (coordinates 1,476,863 to 1,524,049). All these data suggest that this region might be a specific area of the chromosome used to stabilize foreign genetic material. In relation to this, as observed in other *P. stutzeri* strains (4, 16), the complete repertoire of genes needed for the acquisition of foreign DNA by natural transformation (*pilA, pilBCD, pilTU, exbB, and comA*) has been detected.

Nucleotide sequence accession number. This whole-genome shotgun project has been deposited in the DDBJ/EMBL/GenBank databases under the accession number CP003677. The version described in this report corresponds to the first version.

ACKNOWLEDGMENTS

I.B.-G. and M.G. were supported by a grant from the Government of the Balearic Islands (FSE cofunding) and by a “Juan de la Cierva” contract from the Spanish MINECO, respectively. Financial support was obtained from the Spanish MINECO through projects CGL2009-12180 and Consolider CSD2009-00006, as well as funds for competitive research groups from the Government of the Balearic Islands (the last two funds with FEDER cofunding).

REFERENCES

Received 19 September 2012 Accepted 25 September 2012

Address correspondence to Rafael Bosch, rbosch@uib.es.

Copyright © 2012, American Society for Microbiology. All Rights Reserved. doi:10.1128/JB.01753-12

