Genome Sequence of *Fulvimarina pelagi* HTCC2506<sup>T</sup>, a Mn(II)-Oxidizing Alphaproteobacterium Possessing an Aerobic Anoxygenic Photosynthetic Gene Cluster and Xanthorhodopsin

Ilnam Kang,1 Hyun-Myung Oh,1 Seung-II Lim,1 Steve Ferriera,2 Stephen J. Giovannoni,3 and Jang-Cheon Cho1*

**Division of Biology and Ocean Sciences, Inha University, Incheon 402-751, Republic of Korea; J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, Maryland 20850; and Department of Microbiology, Oregon State University, Corvallis, Oregon 97331**

Received 30 June 2010/Accepted 7 July 2010

*Fulvimarina pelagi* is a Mn(II)-oxidizing marine heterotrophic bacterium in the order *Rhizobiales*. Here we announce the draft genome sequence of *F. pelagi* HTCC2506<sup>T</sup>, which was isolated from the Sargasso Sea by using dilution-to-extinction culturing. The genome sequence contained a xanthorhodopsin gene as well as a photosynthetic gene cluster, which suggests the coexistence of two different phototrophic mechanisms in a single microorganism.

Besides being mediated by the well-known process of aerobic photosynthesis, utilization of light energy in the marine oxygen and nutrient cycling processes is usually mediated by aerobic anoxygenic phototrophic bacteria (AAPB) or prokaryotes containing microbial rhodopsin family proteins (18). AAPB comprise about 10% of total microbial cells in the euphotic zone of diverse marine regimes, with alpha-, beta-, and gammaproteobacteria as major constituents (8, 10). Rhodopsin family proteins, including bacterioprhodopsin, proteorhodopsin, and xanthorhodopsin (XR), have been shown to exist in 7 to 70% of marine prokaryotes and contribute phototrohropy in diverse phylogenetic groups such as *Flavobacteria*, *Proteobacteria*, and *Archaea* (15, 19). However, no single microorganism has been reported to contain the genes for both aerobic anoxygenic phototrophy (AAP) and rhodopsin family proteins.

*F. pelagi* HTCC2506<sup>T</sup> was cultivated through a dilution-to-extinction approach (3) from the western Sargasso Sea and identified as a novel genus and species in the order *Rhizobiales* of the *Alphaproteobacteria* by polyphasic taxonomy (2). Later, three *F. pelagi* strains, including HTCC2506<sup>T</sup>, were shown to have Mn(II)-oxidizing activity (1). The draft genome sequence of HTCC2506<sup>T</sup> was determined by shotgun sequencing at the J. Craig Venter Institute as part of the Moore Foundation Microbial Genome Sequencing Project and analyzed by the Joint Genome Institute IMG system (http://img.jgi.doe.gov) (14).

The draft genome was 3,802,689 bp in length, distributed in 20 contigs with 61.2% G+C content, and contained 3,754 protein-coding genes, three copies of 16S-23S-5S rRNA genes, and 54 tRNA genes. Remarkably, HTCC2506<sup>T</sup> possessed XR and a complete gene set for AAP together. A gene cluster encoding the AAP apparatus was composed of bchIDO-crtCDF-bchXYZ-pufBALMC-ubiA-lhaA-bchMLHBNF-aerR-ppsR-ubiA-pucC-bchP-hemT<sup>T</sup>. Mu-like phage sequences were located closely adjacent to the AAP gene cluster, which might imply the possibility of the lateral gene transfer of the AAP gene cluster. The XR gene was followed by *blh*, a gene involved in retinal biosynthesis (16). To our knowledge, this is the first report of a microbe possessing both an AAP apparatus and a rhodopsin family protein, although the two gene sets in HTCC2506<sup>T</sup> had been separately reported to be present (5, 13). The HTCC2506<sup>T</sup> genome also encoded a bacteriochlorophyll *c* (6, 7), a light-regulated signal transduction histidine kinase. Overall, the existence of a diverse repertoire of genes for sensing or harvesting of light energy implicates the importance of phototrophic metabolism for HTCC2506<sup>T</sup>.

In addition to genes for phototrophy, the genome contained several genes with diverse metabolic potential. A lithotrophic mode of energy acquisition was predicted from the presence of the form II *coxSLM* genes, which encode aerobic-type carbon monoxide dehydrogenase (9). As expected from the Mn(II)-oxidizing activity of HTCC2506<sup>T</sup>, the genome also encoded a multicopper oxidase (MCO) enzyme, suggesting a potential lithotrophy. In terms of carbon assimilation, genes encoding RuBisCO and phosphoribulokinase of the Calvin-Benson-Bassham cycle (11) were predicted, suggesting the possibility of autotrophic CO<sub>2</sub> fixation in HTCC2506<sup>T</sup>. Serine transhydroxymethylase for formaldehyde assimilation (12) was predicted. A gene encoding dimethylsuloniopropionate (DMSP) lyase, which conveys the production of dimethylsulfide from DMSP (4), was also found in the genome.

Although HTCC2506<sup>T</sup> was originally isolated as a chemo-heterotroph (2), the genome sequence clearly shows the phototrophic potential of this bacterium. This finding, combined...
with the prediction of many genes related to lithotrophy, carbon fixation, C\textsubscript{4} compound assimilation, and DMSP lysis, suggests that *F. pelagi* HTCC2506\textsuperscript{3} may use a wide range of potential metabolic functions to survive in the marine euphotic environment.

**Nucleotide sequence accession number.** The draft genome sequence of HTCC2506\textsuperscript{3} was deposited in GenBank under the accession number AATP00000000. The GenDB-generated data can be also accessed at Marine Microbial Genomics at Oregon State University (http://bioinfo.cgrb.oregonstate.edu/microbes/).

The initial phase of sequencing, assembly, and annotation efforts were carried out at the OSU High Throughput Culturing Laboratory with support from a Gordon and Betty Moore Foundation investigator award and the Gordon and Betty Moore Foundation Marine Microbial Sequencing Project. Subsequent data analysis was conducted at Inha University and also supported by the 21C Frontier Program of Microbial Genomics and Applications.

We thank Justin Johnson, Jason Miller, Granger Sutton, Saul A. Kravitz, Robert Friedman, and Yu-Hui Rogers for their technical and scientific support of the Gordon and Betty Moore Foundation-funded project.

**REFERENCES**


