Complete and Circularized Genome Assembly of a Human Isolate of *Vibrio navarrensis* Biotype *pommerensis* with MiSeq and MinION Sequence Data

Keike Schwartz,a Maria Borowiak,a Carlus Deneke,a Veronika Balau,b Claudia Metelmann,b Eckhard Straucha

aGerman Federal Institute for Risk Assessment, Department of Biological Safety, Berlin, Germany
bInstitut für Medizinische Diagnostik Labor Greifswald, Greifswald, Germany

ABSTRACT *Vibrio navarrensis* is a rare human pathogen. Strains of *Vibrio navarrensis* biotype *pommerensis* were isolated from seawater of the Baltic Sea. Recently, a strain of this biotype was recovered from a human patient. The isolate contains two circular chromosomes and a large plasmid with a size of 180 kb.

*V*ibrio *navarrensis* was found in river water and sewage in Spain (1). Later, isolates obtained from clinical samples suggested a human-pathogenic potential for this species (2). *V. navarrensis* biotype *pommerensis* strains were detected in seawater samples from the Baltic Sea (3). Isolates of the biotype *pommerensis* revealed major differences in biochemical profiles as well as borderline values in DNA-DNA hybridization experiments, compared to the *V. navarrensis* reference strain ATCC 51183 (4).

Strains of the biotype *pommerensis* have rarely been discovered in German coastal waters (5); however, in summer 2020, a biotype *pommerensis* isolate was recovered from a feverish patient suffering from an erysipelas-like infection on one leg. Prior to infection, the patient had been bathing in the Baltic Sea. The new isolate (20-VB00237) was subjected to whole-genome sequencing for further investigation.

The isolate was obtained from a blood culture (BD Bactec Plus Aerobic/Aerobic-F) using Columbia agar with 5% sheep blood according to the manufacturer’s recommendations (BD, Heidelberg, Germany). Subsequently, the isolate was cultivated for 24 h at 37°C in lysogeny broth. Genomic DNA was extracted using the PureLink genomic DNA minikit (Thermo Fisher Scientific, Waltham, MA, USA) and sequenced using MiSeq (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore Technologies [ONT], Oxford, UK) devices. An Illumina sequencing library was prepared using the Nextera DNA Flex kit. Paired-end sequencing was performed in 2 × 151-bp cycles on an Illumina MiSeq instrument using the MiSeq reagent kit v3 (600 cycles). Trimming of short reads using fastp v0.19.5 (6) resulted in 1.2 million high-quality reads (97.8% with a quality score of ≥Q30). An ONT sequencing library was prepared using the Nextera DNA Flex kit. Paired-end sequencing was performed in 2 × 151-bp cycles on an Illumina MiSeq instrument using the MiSeq reagent kit v3 (600 cycles). Trimming of short reads using fastp v0.19.5 (6) resulted in 1.2 million high-quality reads (97.8% with a quality score of ≥Q30). An ONT sequencing library was prepared using the Nextera DNA Flex kit. Paired-end sequencing was performed in 2 × 151-bp cycles on an Illumina MiSeq instrument using the MiSeq reagent kit v3 (600 cycles). Trimming of short reads using fastp v0.19.5 (6) resulted in 1.2 million high-quality reads (97.8% with a quality score of ≥Q30).

The two data sets were assembled and circularized using Unicycler v0.4.8 including Pilon (8–10). Default parameters were used for all software unless otherwise noted. The assembly resulted in two circular bacterial chromosomes, i.e., chromosome 1 (3,534,271 bp) and chromosome 2 (1,395,396 bp), and a closed plasmid (pVN20-VB00237) of 180,139 bp. The overall G+C content of the bacterial genome was 42.8 mol%.

Editor Frank J. Stewart, Georgia Institute of Technology

Copyright © 2021 Schwartz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Eckhard Strauch, eckhard.strauch@bfr.bund.de.

Received 14 December 2020
Accepted 13 January 2021
Published 4 February 2021
47.9%. The genome sequence was annotated using PGAP v4.11 (https://www.ncbi.nlm.nih.gov/genome/annotation_prok). Results revealed the presence of 4,662 coding sequences (CDSs) (4,511 protein-coding CDSs and 151 pseudogenes) and 150 RNA genes (34 rRNAs, 112 tRNAs, and 4 noncoding RNAs).

The isolate 20-VB00237 genome was compared to previously published *V. navarrensis* and *V. navarrensis* biotype *pommerensis* genomes. Therefore, all genomes were annotated using Prokka v1.1.3 (https://github.com/tseemann/prokka). Subsequently, phylogeny was inferred using bcgTree v1.1.0 (11), which compares the amino acid sequences of 107 single-copy core genes. The resulting maximum likelihood tree was visualized in Geneious v2020.2.2 (Biomatters, Auckland, New Zealand), manually rooted using the *V. navarrensis* node, and finalized using Inkscape. The final tree (Fig. 1) reveals that strain 20-VB00237 groups within a distantly related cluster of other *V. navarrensis* biotype *pommerensis* strains that were previously isolated from the Baltic Sea.

Data availability. The complete genome sequence of 20-VB00237 is available at NCBI (GenBank accession numbers CP065217 [chromosome 1], CP065218 [chromosome 2], and CP065219 [pVN20-VB00237]). Sequencing raw reads were deposited in the NCBI Sequence Read Archive (SRA) (accession numbers SRX956654 [ONT data] and SRX9566545 [Illumina data]).

ACKNOWLEDGMENTS

We thank Cornelia Göllner, Nicole vom Ort, Jonas Nekat, Katharina Thomas, and Beatrice Baumann for excellent technical assistance.

The project was financially supported by grants (45-009 and 4SZ-001) from the German Federal Institute for Risk Assessment.

REFERENCES

