Complete Genome Sequence of *Citrobacter freundii* Myophage Maleficent

Hayden H. Wright,* Victoria Berkowitz,∗ Chandler O’Leary,* Heather Newkirk,* Rohit Kongari,* Jason Gill,* Mei Liu*

*Center for Phage Technology, Texas A&M University, College Station, Texas, USA

ABSTRACT *Citrobacter freundii*, a member of the *Enterobacteriaceae* family, has been linked to opportunistic infections in neonates and immunocompromised adults. Here, we report the complete genome sequence of a T4-like myophage, Maleficent, which infects *C. freundii*.

Citrobacter freundii is a Gram-negative bacterium belonging to the family *Enterobacteriaceae*. Apart from causing opportunistic nosocomial urinary tract infections in immunocompromised patients (1), *C. freundii* has been associated with fatal cases of neonatal meningitis (3, 4). With the rise of antibiotic-resistant *Citrobacter* strains (5), alternative treatment options such as phage therapy are being explored (6, 7). The isolation and characterization of bacteriophages infecting *C. freundii*, such as the myophage Maleficent described in this study, could help with such strategies.

Phage Maleficent was isolated using a *C. freundii* strain from a municipal wastewater sample collected from College Station, TX, in 2015. LB broth or agar (Difco) was used to culture the host bacteria and for phage enrichment at 37°C with aeration. Phage isolation and propagation were conducted using the soft-agar overlay method (8). Maleficent was identified as a myophage using negative-stain transmission electron microscopy performed at the Texas A&M University Microscopy and Imaging Center, as described previously (9). Phage genomic DNA was prepared using a modified Promega Wizard DNA cleanup kit protocol (9). Pooled indexed DNA libraries were prepared using the Illumina TruSeq Nano LT kit, and the sequence was obtained from the Illumina MiSeq platform using the MiSeq V2 500-cycle reagent kit, following the manufacturer’s instructions, producing 773,101 paired-end reads for the index containing the phage Maleficent genome. FastQC 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to quality control the reads. The reads were trimmed with the FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/download.html) before being assembled using SPAdes 3.5.0 (10). Contig completion was confirmed by PCR using primers (5′-AACGGTTTAGTAACCCTGTTAG-3′ and 5′-ACATGTACAACCTGCATCAC-3′) facing off the ends of the assembled contig and Sanger sequencing of the resulting product, with the contig sequence manually corrected to match the resulting Sanger sequencing read. GLIMMER 3.0 (11) and MetaGeneAnnotator 1.0 (12) were used to predict protein-coding genes with manual verification, and tRNA genes were predicted with ARAGORN 2.36 (13). Rho-independent termination sites were identified via TransTerm (http://transterm.ccb.cb.columbia.edu/). Sequence similarity searches were done by BLASTp 2.2.28 (14) against the NCBI nr, UniProt Swiss-Prot (15), and TrEMBL databases. InterProScan 5.15–54.0 (16), LipoP (17), and TMHMM v2.0 (18) were used to predict protein function. All analyses were conducted at default settings via the CPT Galaxy (19) and Web Apollo (20) interfaces (https://cpt.tamu.edu/galaxy-pub).

Myophage Maleficent has an 89,570-bp-long genome (assembled at 34.7-fold coverage) with 34.7% GC content, which is lower than that of the host (51.6%) (21). Overall, 137 protein-coding sequences were annotated, leading to a coding density of 81%.

Editor John J. Dennehy, Queens College
Copyright © 2019 Wright et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
Address correspondence to Mei Liu, meiliu@tamu.edu.
Received 16 September 2019
Accepted 23 September 2019
Published 17 October 2019
About 76% of the annotated proteins in the Maleficent genome have homologs in phage T4 (NCBI RefSeq accession no. NC_000866). Most of the genes annotated with a function were either linked to DNA replication (such as polymerase, DNA ligase, DNA helicase, thymidylate synthase, and exonuclease) or involved in virion morphogenesis (such as head maturation protease, major capsid protein, tail protein, tape measure protein, baseplate assembly protein, and tail fiber protein). Genes associated with host lysis, such as class III holins, losoyzmes, and an overlapping spanin pair, were also annotated in the genome.

Data availability. The genome sequence of phage Maleficent was submitted to GenBank as accession no. MH920362. The associated BioProject, SRA, and BioSample accession numbers are PRJNA222858, SRR8556430, and SAMN10909361, respectively.

ACKNOWLEDGMENTS

This work was supported by funding from the National Science Foundation (awards EF-0949351 and DBI-1565146). Additional support came from the Center for Phage Technology (CPT), an Initial University Multidisciplinary Research Initiative supported by Texas A&M University and Texas AgriLife, and from the Department of Biochemistry and Biophysics at Texas A&M University.

We are grateful for the advice and support of the CPT staff and the Texas A&M University Microscopy and Imaging Center.

This announcement was prepared in partial fulfillment of the requirements for BICH464 Phage Genomics, an undergraduate course at Texas A&M University.

REFERENCES