Genome Sequences of Two *Mycobacterium tuberculosis* Isolates from Asian Elephants in Nepal

Sarad Paudel,a Evan P. Brenner,a Syeda A. Hadi,a Yasuhiro Suzuki,b,c Chie Nakajima,b,c Toshio Tsubota,d Kamal Prasad Gairhe,e Bhagwan Maharjan,f Srinand Sreevatsan*a

aPathobiology & Diagnostic Investigation Department, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
bDivision of Bioreources, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
cInternational Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo, Japan
dLaboratory of Wildlife Biology and Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
eDepartment of National Parks and Wildlife Conservation, Chitwan National Park, Chitwan, Nepal
fNational Tuberculosis Control Center (NTCC), Thimi, Bhaktapur, Nepal

Sarad Paudel and Evan P. Brenner contributed equally to this work. Sarad Paudel was the attending veterinarian who isolated the bacteria from granulomas and extracted DNA for genome sequencing. Evan P. Brenner built the algorithms for genome assembly, analyzed the data and submitted it to NCBI. While Paudel and Brenner equally contributed to this study, since isolates were obtained by Paudel, he is listed first in the authorship order.

ABSTRACT This report describes the genome sequences of two *Mycobacterium tuberculosis* isolates, S1 and S3, recovered from Asian elephants in Nepal. These genome sequences will enhance our understanding of the genomic epidemiology of *Mycobacterium tuberculosis* in Asian elephants.

Asian elephants (*Elephas maximus*) are an endangered species (1) with fewer than 50,000 individuals remaining worldwide (2). Tuberculosis (TB) in wild and captive elephants further jeopardizes the survival of the species (3). Lung lesions reminiscent of granulomas and suspected to be tuberculosis were collected at necropsy of two captive Asian elephants from Chitwan National Park, Nepal. Lung tissue samples were processed for inoculation into Löwenstein-Jensen (L-J) medium, incubation at 37°C for ~8 weeks, and DNA extraction using the GenoType DNA isolation kit (Hain Lifescience GMBH, Nehren, Germany) from a slant culture at the TB laboratory of the German Nepal Tuberculosis Project (GENETUP) in Kathmandu, Nepal (4). Confirmation and genotyping for *Mycobacterium tuberculosis*, including multiplex PCR, *gyrB* sequencing, spoligotyping, and variable-number tandem repeat (VNTR) analysis, were performed at the Hokkaido University Research Center for Zoonosis Control, Hokkaido, Japan, as described (4). Genomic DNA was submitted to Novogene for whole-genome sequencing.

The NEBNext DNA library prep kit (New England BioLabs, Ipswich, MA) was used to generate paired-end (2 × 150-bp) libraries, which were quality checked using Qubit 2.0, the Agilent 2100 Bioanalyzer, and quantitative PCR (qPCR) prior to whole-genome sequencing (WGS) on the Illumina NovaSeq 6000 platform. Novogene's custom software trimmed adapters and discarded paired-end reads containing contaminant adapter sequences, pairs of reads containing more than 10% uncertain nucleotide calls, and pairs containing Phred scores less than or equal to 5. The reads were analyzed using Kraken2 v2.1.2 to eliminate contaminating sequences (5), and 92.7% of S1 and 99.12% of S3 reads were mapped to the *Mycobacterium tuberculosis* complex (MTBC) using the Kraken2 default parameters and database. MTBC-classified reads were separated using the extract_kraken_reads.py script from KrakenTools (Jennifer Lu, KrakenTools). HISAT2 v2.2.1 was used to determine the coverage of reads relative to *M. tuberculosis* H37Rv (GenBank accession number NC_000962.3) (6). Genome assembly was performed de novo using

Editor Catherine Putonti, Loyola University Chicago

Copyright © 2021 Paudel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Srinand Sreevatsan, sreevats@msu.edu.

Received 14 June 2021 **Accepted** 8 August 2021 **Published** 9 September 2021

Volume 10 Issue 36 e00614-21

mra.asm.org 1
Shovill v1.1.0 (--minlen 300 –gsize 4.41M) to reject contigs shorter than 300 bp (7). RagTag v1.1.1 corrected and scaffolded the output using default parameters and *M. tuberculosis* H37Rv (NC_000962.3) as reference (8). The scaffolds were evaluated using QUAST v5.02 (9) and annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) v5.1 (10). NCBI flagged potential adapter contamination in S3 only, so Kraken2-cleaned S3 reads were processed using Trimmomatic v0.39 (trimming TruSeq3 adapters, parameters: 2:30:10: LEADING:3 TRAILING:3 MINLEN:36) (11) before assembly and successful PGAP resubmission.

Genome sequencing of strain S1 yielded a total of 6,804,775 unfiltered reads. Shovill assembly produced 26 contigs with an N50 value of 4,383,806 bp. The total sequence length of the strain S1 genome is 4,475,258 bp, with a GC content of 65.57% and \(\sim 359 \times \) coverage. The NCBI PGAP identified 4,164 coding DNA sequences (CDSs), 45 tRNAs, 3 noncoding RNAs (ncRNAs), and 198 pseudogenes in strain S1.

Similarly, sequencing of strain S3 resulted in 6,838,686 total unfiltered reads. Shovill assembly produced 19 contigs with an N50 value of 4,382,763 bp. The total sequence length of the strain S3 genome is 4,398,381 bp, with a GC content of 65.59% and \(\sim 385 \times \) coverage. The NCBI PGAP identified 4,069 CDSs, 45 tRNAs, 3 ncRNAs, and 147 pseudogenes. This study reports the *M. tuberculosis* genome sequences from endangered Asian elephants in Nepal and highlights the potential for whole-genome sequencing in genomic epidemiological studies of TB in elephants.

Data availability. The raw reads are available under NCBI BioProject accession number PRJNA729522. The raw reads are available under SRA accession numbers SRX10859885 (strain S1) and SRX10859886 (strain S3). The post-PGAP sequences are available under GenBank accession numbers JAHCQW000000000 (strain S1) and JAHCQV000000000 (strain S3).

ACKNOWLEDGMENTS

We thank Suraj Subedi, Chitra Bahadur Khadka, and Kiran Rijal for lung tissue sample collection from two elephants in Nepal and technicians at GENETUP for helping with the culture in the L-J medium.

We also acknowledge the Department of National Parks and Wildlife Conservation (DNPWC), Nepal, the National Trust for Nature Conservation (NTNC), Nepal, and Elephant Care International (ECI), USA, for their support of elephant TB work in Nepal. Research in the Sreevatsan lab is funded by the USDA (2018-67015-28288).

REFERENCES

