Draft Genome Sequences of Two *Streptomyces* Strains, MZ03-37T and MZ03-48, Isolated from Lava Tube Speleothems

Jose L. Gonzalez-Pimentel,a Valme Jurado,b Bernardo Hermosin,b Cesareo Saiz-Jimenezb

aHERCULES Laboratory, Évora University, Évora, Portugal
bInstituto de Recursos Naturales y Agrobiología de Sevilla, Seville, Spain

ABSTRACT Two *Streptomyces* strains were isolated from a lava tube in La Palma, Canary Islands. Genomic analyses suggest that the two strains could belong to the same species. Here, we report the draft genomes for these bacterial strains.

Specific conditions in underground environments promote the development of new pathways for the survival of microorganisms (1). One of the most representative genera in these environments is *Streptomyces*. This genus is considered the main producer of bioactive compounds (2).

The microbiology of lava tubes in the Canary Islands began to be studied in recent years (3, 4). Two strains were isolated from two different samples, located in the same lava tube, using a sterilized scalpel and were placed in sterile tubes. MZ03-37T was isolated from mucolite speleothems, whereas MZ03-48 was isolated from dark-brown biofilms. Samples were processed on the day of sampling, suspended in a saline solution, and inoculated on Petri plates with a nutrient agar medium with 0.2% glycerol. The study of taxonomic markers based on the 16S rRNA gene sequences and the five housekeeping genes described for multilocus sequence analysis (MLSA) (5) was carried out as described by Dominguez-Moñino et al. (6). The 16S rRNA analysis identified *Streptomyces palmae* CMU-AB204T (98.70%), *Streptomyces catenulae* NRRL B-2342T (98.28%), and *Streptomyces ramulosus* NRRL B-2714T (98.28%) as the closest relatives for both strains. The MLSA revealed *S. catenulae* NRRL B-2342T (*atpD*, *gyrB*, *recA*, and *trpB* genes) and *S. ramulosus* NRRL B-2714T (*rpoB* gene) as the closest neighbors.

Isolation of genomic DNA from this bacterium was carried out using the Marmur method (7). Genomic DNA was sequenced using 250-bp paired-end reads on an Illumina HiSeq platform by means of a Nextera XT library preparation kit. Raw reads were adapter trimmed using Trimmomatic version 0.36 with a sliding window using a quality score cutoff of Q15 (8). The draft genome was assembled using SPAdes version 3.11.1 (9) with the flag "careful" to reduce the number of mismatches and short indels. Annotations were carried out using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) (10) and Smas3 (11) with the flag "uniprot" for the Uniprot/Swiss-Prot database, whereas antiSMASH (12), with the detection strictness parameter in strict mode and all extra features on, was used for prediction of secondary metabolites. Sequencing and assembly statistics, as well as the NCBI PGAP results, are listed in Table 1.

Relatedness between MZ03-37T, MZ03-48, and the closest species, as determined by 16S rRNA analysis and MLSA, was assessed by calculating the average nucleotide identity using BLAST (ANiB) and the average nucleotide identity using MUMmer (ANiM), by means of JSpeciesWS (13). The NCBI accession numbers for the closest relatives are **SRID00000000** and **JODY00000000** for *S. palmae* CMU-AB204T and *S. catenulae* NRRL B-2342T, respectively, whereas the *S. ramulosus* NRRL B-2714T genome was assembled for this study using the SRA data (accession number **SRR7783857**) (14), following the same methodology. Both strains, MZ03-37T and MZ03-48, shared an identity of 99.98%
for ANIb and ANIm. However, genome comparison analyses with the closest species showed scores below the recommended threshold (95%) for species delineation. These results suggest that strains MZ03-37T and MZ03-48 belong to the same species, which differ from the closest type strains.

Sma3s predicted 83 and 82 genes probably involved in the synthesis of antibiotics in strains MZ03-37T and MZ03-48, respectively. AntiSMASH predicted a total of 28 and 29 biosynthetic gene clusters in strains MZ03-37T and MZ03-48, respectively. Promoting further studies of microbiology in subsurface environments could result in new biomolecules with biotechnological uses (15).

Data availability. The whole-genome shotgun projects for Streptomyces sp. strains MZ03-37T and MZ03-48 have been deposited in DDBJ/ENA/GenBank under the accession numbers VKJP000000000 and VKLS000000000, respectively. The versions described in this paper are the first versions, VKJP01000000 and VKLS01000000, respectively. BioProject and raw data are available under the accession numbers PRJN53665 and SRR10391217 for strain MZ03-37T and PRJN53134 and SRR10391142 for strain MZ03-48.

ACKNOWLEDGMENT

Financial support was obtained through project 0483_PROBIOMA_5_E, cofinanced by the European Regional Development Fund within the framework of the Interreg V A - Spain-Portugal program (POCTEP) (2014 to 2020).

REFERENCES

TABLE 1 Statistics for genomes of strains MZ03-37T and MZ03-48

<table>
<thead>
<tr>
<th>Strain</th>
<th>No. of reads</th>
<th>Median insert size (bp)</th>
<th>Mean coverage (%)</th>
<th>No. of contigs</th>
<th>(N_{50}) (bp)</th>
<th>Size of largest contig (bp)</th>
<th>Genome size (bp)</th>
<th>G+C content (%)</th>
<th>Total no. of genes</th>
<th>No. of rRNAs</th>
<th>No. of tRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ03-37T</td>
<td>4,091,770</td>
<td>277</td>
<td>191.3</td>
<td>814</td>
<td>16,301</td>
<td>160,358</td>
<td>6,995,846</td>
<td>72.2</td>
<td>6,313</td>
<td>15</td>
<td>65</td>
</tr>
<tr>
<td>MZ03-48</td>
<td>1,736,762</td>
<td>366</td>
<td>84.4</td>
<td>1,118</td>
<td>11,353</td>
<td>93,658</td>
<td>6,913,747</td>
<td>72.1</td>
<td>6,333</td>
<td>16</td>
<td>65</td>
</tr>
</tbody>
</table>

Acknowledgments. Financial support was obtained through project 0483_PROBIOMA_5_E, cofinanced by the European Regional Development Fund within the framework of the Interreg V A - Spain-Portugal program (POCTEP) (2014 to 2020).