Diagnostic accuracy of SARS-CoV-2 rapid antigen detection testing in symptomatic and asymptomatic children in the clinical setting

Running title: PanbioTM Ag-RDT for SARS-CoV-2 diagnosis in children

Arnaud G. L’Huillier, MDa,bb\#, Matthieu Lacourc, Debora Sadikuc, Mehd A. Gadiric, Loraine De Siebenthalc, Manuel Schibler, PhDb,de, Isabella Eckerle, MDb,de, Selina Pinösch, MDf, Laurent Kaiser, MDb,de, Alain Gervaix, MDf, Alban Glangetas, MDf, Annick Galetto-Lacour, MDf, Laurence Lacroix, MDf

Affiliations:

a Pediatric Infectious Diseases Unit, Department of Women, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

b Laboratory of Virology, Division of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

c Faculty of Medicine, Geneva, Switzerland

d Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and Faculty of Medicine

e Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals and Faculty of Medicine

f Division of General Pediatrics, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland

g Pediatric Emergency Department, Child and Adolescent Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
27

Corresponding author:

28 Arnaud G. L’Huillier

29 Pediatric Infectious Diseases Unit

30 Geneva University Hospitals and Faculty of Medicine

31 6 rue Willy-Donzé, 1205 Geneva, Switzerland

32 Tel: +41 79 5531385; Fax: +41 22 3723095; arnaud.lhuillier@hcuge.ch

33

34
ABSTRACT

Background. Antigen-based rapid diagnostic tests (RDTs) are used in children despite the lack of data. We evaluated the diagnostic performance of the Panbio™-COVID-19 Ag Rapid Test Device (P-RDT) in children.

Methods. Symptomatic and asymptomatic participants 0-16yo had two NPS for both RT-PCR and P-RDT.

Results. 822 participants completed the study, of which 533 (64.9%) were symptomatic. Among the 119 (14.5%) RT-PCR-positive patients, the P-RDT sensitivity was 0.66 (95%CI 0.57-0.74). Mean viral load (VL) was higher among P-RDT-positive than negative ones (p<0.001). Sensitivity was 0.91 in specimens with VL>1.0E6 IU/mL (95%CI 0.83-0.99), and decreased to 0.75 (95%CI 0.66-0.83) for specimens >1.0E3 IU/mL.

Among symptomatic participants, the P-RDT displayed a sensitivity of 0.73 (95%CI 0.64-0.82), which peaked at 1.00 at 2 days post-onset of symptoms (DPOS; 95%CI 1.00-1.00), then decreased to 0.56 (95%CI 0.23-0.88) at 5 DPOS. There was a trend towards lower P-RDT sensitivity in symptomatic children <12 years (0.62 [95%CI 0.45-0.78]) versus ≥12 years (0.80 [95%CI 0.69-0.91]; p=0.09).

In asymptomatic participants, the P-RDT displayed a sensitivity of 0.43 (95%CI 0.26-0.61).

Specificity was 1.00 in symptomatic and asymptomatic children (95%CI 0.99-1.00).

Conclusion. The overall respective 73% and 43% sensitivities of P-RDT in symptomatic and asymptomatic children was below the 80% cut-off recommended by the WHO. We observed a correlation between VL and P-RDT sensitivity as well as variation of sensitivity according to DPOS, a major determinant of VL. These data highlight the limitations of RDTs in children, with the potential exception in early symptomatic children ≥12yrs.
INTRODUCTION

The current Coronavirus Disease 19 (COVID-19) pandemic induces the need for widespread SARS-CoV-2 testing to control virus circulation. The rapid identification of SARS-CoV-2 infected individuals is important whether persons are symptomatic or not, as the role of asymptomatic persons in SARS-CoV-2 transmission is still unclear. Therefore, easy to use, affordable and rapid diagnostic methods are required in addition to the gold-standard reverse-transcription polymerase chain reaction (RT-PCR). These devices are increasingly helpful in settings where results are immediately needed, access to a testing facility is limited or in case of shortage of RT-PCR reagents. Several antigen-based rapid diagnostic tests (RDTs) have been marketed to fill this gap. Among them, the Panbio™-COVID-19 Ag Rapid Test Device COVID-19 (referred hereby as P-RDT) has displayed an overall sensitivity ranging between 61%-92%(2-7) in adults when compared to nasopharyngeal RT-PCR. Sensitivity was improved for higher viral loads (VLs), shorter duration of symptoms and/or in symptomatic patients(2-6). In symptomatic children, the overall sensitivity of the P-RDT was 45-78%(5, 8, 9) but published data do not take into account the effect of VL nor the duration of symptoms. Moreover, to our knowledge no study has evaluated this assay in asymptomatic children at time of sampling. The aim of the present study was to provide an independent evaluation of the diagnostic performance of the P-RDT in a large cohort of symptomatic and asymptomatic children. We also aimed to identify situations with optimal P-RDT sensitivity, by accounting for VL, day post onset of symptoms (DPOS), type and number of symptoms.

METHODS

Setting. This single-center prospective diagnostic study was performed in Geneva University Hospitals’ (HUG) pediatric testing center, from November 10th 2020 to March 26th 2021, with a peak incidence of 583/100’000/week(10). Participants 0 to 16 years old who presented with
the need for SARS-CoV-2 RT-PCR testing were approached. Indication for RT-PCR testing in symptomatic participants was symptoms suggestive of SARS-CoV-2 infection according to local governmental testing criteria. Indications for RT-PCR testing in asymptomatic participants were notification by local health authorities after contact with a laboratory confirmed SARS-CoV-2 infected person and pre-travel testing. The presence or absence of exposure to a SARS-CoV-2 infected person was not documented.

Study procedures. For each enrolled participant, two nasopharyngeal swabs (NPS) were collected. Nurses were trained to perform NPS testing through a standardized video-documented procedure. First, a standard flocked swab placed in viral transport media (VTM) was used for viral genome detection by RT-PCR. The second swab, provided in the P-RDT kit, was obtained from the contralateral or ipsilateral nostril and the antigen test was performed immediately at the testing center as per the manufacturer’s instructions. All study participants and/or caregivers provided written informed consent prior to specimen collection. The study was approved by the local research ethics board (Commission cantonale d'éthique de la recherche #2020-02323).

P-RDT testing. The Panbio™-COVID-19 Ag Rapid Test Device for nasopharyngeal use (Abbott Rapid Diagnostics, US; ref 41FK10) was chosen for the current study based on adult data from our institution showing optimal sensitivity and ease of use. The P-RDT was used as recommended by the manufacturers, using materials provided in the kit only. P-RDT results were read independently by two members of the study team, both being blinded to the result assigned by their pair as well as to the clinical presentation of the participant. Any discrepant result was considered positive when any of the above-mentioned reader set a positive diagnosis.
RT-PCR testing. RT-PCR testing was performed either on Cobas® SARS-CoV-2 assay (cobas® SARS-CoV-2 Test, Cobas 6800, Roche, Switzerland) or on TaqPath (Applied Biosystems, Thermo Fisher Scientific, Waltham, USA) RT-PCR assay, using NPS in 3 mL VTM. In order to transform Cycle threshold (Ct)-values into IU/ml, serial dilutions of the first World Health Organization (WHO) international standard for SARS-CoV-2 RNA(11) (National Institute for Biological Standards and Control [NIBSC], Potters Bar, United Kingdom; product code: 20/146) were performed to calibrate both RT-PCR assays, as per manufacturer’s instructions. All VLs were calculated for original specimens in log IU/mL of VTM from the Ct values, using the following formulas: for Cobas (E gene target), VL (log IU/mL) = (Ct value -42.59)/-3.096 and for TaqPath (N gene target), VL (log IU/mL) = (Ct value-44.333)/-3.08.

Data collection. The following data collected at enrolment were managed using RedCap™ electronic data capture tools hosted at HUG: date of enrolment, number of days post onset of symptoms (DPOS), gender, age, type of symptoms (nasal discharge, cough, dyspnea, dysphagia, dysgeusia, anosmia, vomiting, diarrhea, fever, chills, decreased intake, headache, myalgia, fatigue and irritability, abdominal pain, nausea) and comorbidities if present (chronic respiratory disease, cardiopathy, immunosuppression, cancer, diabetes, obesity, hypertension and organ failure). P-RDT results, RT-PCR and VL/Ct values were included subsequently.

Statistics. Before study onset, a sample size was calculated to have sufficient power to generate a 95% confidence interval (CI) with a lower bound above the WHO target of 80%, if the prevalence was 25% (corresponding the pediatric positivity rate at study onset) and the measured sensitivity of 85% (corresponding to the sensitivity reported in adults in our institution)(6). The sample size was therefore estimated at 654 participants. Continuous
variables were expressed by their mean ± standard deviation (SD) and median (interquartile range [IQR]) upon variable distribution. Categorical variables were presented by their frequencies and relative proportions. For comparisons of continuous variables, parametric Student T-tests and nonparametric Mann-Whitney tests upon variable distribution were used. For categorical variables, either Chi² or Fischer’s exact tests were performed depending on applicability. Statistical analyses were processed under SPSS software v23.0 (IBM Corp., Armonk, NY). Statistical significance was defined as p<0.05 (two-sided).

Role of the funding source. The study was supported by the Geneva Centre for Emerging Viral Diseases. The funder had not involvement in data analysis and manuscript redaction.

Data sharing statement. Study protocols, statistical analysis plan and Individual participant data after de-identification that underlie the results reported in this article can be made available after de-identification to researchers who make a methodologically sound proposal. Proposals should be directed to arnaud.lhuillier@hcuge.ch. To gain access, data requestors will need to sign a data access agreement.

RESULTS

Eight hundred and eighty-five pediatric participants were enrolled. Among them, 63 were subsequently excluded (Supplementary Figure 1). A total of 822 participants completed the study and had both RT-PCR and P-RDT performed. Demographics of symptomatic and asymptomatic study participants are detailed in Table 1. Overall, 14.5% (119/822) were positive by RT-PCR with a mean RNA VL of 5.5 log IU/mL (SD 2.0) (Table 1). Among the 822 P-RDT performed, only one P-RDT result displayed a
discrepant interpretation between the two observers ($\kappa=0.999$). The corresponding patient was subsequently considered as positive for the purpose of the analysis, leaving an overall positivity rate of 9.6% (79/822). The P-RDT’s sensitivity and specificity when challenged against RT-PCR were 0.66 (95%CI 0.57-0.74) and 1.00 (95%CI 1.00-1.00) respectively (Table 2 and Supplementary Table 1). Mean VL was higher among positive P-RDT specimens than negative ones (6.4 log IU/mL [SD 1.4] vs 3.7 [SD 1.6]; $p<0.001$) (Figure 1). Sensitivity varied according to RT-PCR VL, even though false-negative results occurred throughout all VL values. Sensitivity was highest at 0.97 in specimens with VL >1.0E7 IU/mL (95%CI 0.91-1.00), decreased slightly to 0.91 (95%CI 0.83-0.99) for specimens >1.0E6 IU/mL, and to 0.87 (95%CI 0.79-0.94) and 0.86 (95%CI 0.79-0.94) for specimens >1.0E5 IU/mL and >1.0E4 IU/mL, respectively. Sensitivity then dropped to 0.75 (95%CI 0.66-0.83) and 0.69 (95%CI 0.61-0.78) for specimens >1.0E3 IU/mL and >1.0E2 IU/mL, respectively (Figure 2). Of note, nine P-RDT negative specimens despite a high viral load by RT-PCR were retested using another RT-PCR assay which confirmed high viral load in every specimen.

Mean viral load was lower in children <12 years old than in older children (5.0 log IU/mL [SD 2.0] vs 5.9 [SD 1.9]; $p=0.011$) and there was a trend towards lower P-RDT sensitivity in children <12 years old (0.57 [95%CI 0.44-0.70]) than in older children (0.74 [95%CI 0.63-0.85]; $p=0.057$). Additional demographics stratified by age group are detailed in Supplementary Table 2.

Symptomatic participants

Among the 533 (64.9%) symptomatic participants, median duration of symptoms at time of testing was two days (IQR 1-3) (Supplementary Table 3). The most frequently reported symptoms were headache (56%), nasal discharge (56%), cough (45%) and fatigue (44%) (Supplementary Table 3). Eighty-nine symptomatic patients (16.7%) were positive by RT-
PCR with a mean RNA VL of 5.9 log IU/mL (SD 1.8) (Table 1). The P-RDT displayed an overall sensitivity and specificity of 0.73 (95%CI 0.64-0.82) and 1.00 (95%CI 0.99-1.00) respectively (Table 2 and Supplementary Table 1). For specimens with VL >1.0E6 IU/mL, sensitivity was 0.92 (95%CI 0.84-1.00). Mean VL was higher among positive P-RDT specimens than negative ones (6.6 log IU/mL [SD 1.3] vs 4.1 [SD 1.7]; p<0.001) (Figure 1).

Sensitivity was 0.68 at 0-1 DPOS (95%CI 0.53-0.83), peaked at 1.00 at 2 DPOS (95%CI 1.00-1.00), then gradually decreased to 0.73 (95%CI 0.46-0.99), 0.63 (95%CI 0.29-0.96) and 0.56 (95%CI 0.23-0.88) at 3, 4 and 5 DPOS respectively (Figure 3A). False-negative results occurred across all DPOS except at 2 DPOS.

Additionally, we analyzed sensitivity according to typical acute COVID-19 symptoms. Only objective symptoms were reported for the purpose of this analysis, because of the low ability of children to report more subjective symptoms such as anosmia, even though very suggestive of COVID-19. Sensitivity was highest in the presence of chills (0.88 [95%CI 0.65-1.00]) and cough (0.86 [95%CI 0.75-0.96]), followed by fever (0.74 [95%CI 0.56-0.92]), and then non-specific symptoms (0.65 [95%CI 0.50-0.80]) (Figure 3B). Interestingly, sensitivity was significantly better in participants reporting >2 symptoms (0.78 [95%CI 0.68-0.87]) than in those reporting only 1-2 symptoms (0.53 [95%CI 0.29-0.77]; p=0.038).

Among symptomatic participants, mean viral load did not significantly differ between children <12 years old and older children (5.5 log IU/mL [SD 1.8] vs 6.2 [SD 1.8]; p=0.085). Moreover, median duration of symptoms did not differ between children <12 years old and older children (2 days [IQR 1-4] for both groups; p=0.790). There was a trend towards lower P-RDT sensitivity in children <12 years old (0.62 [95%CI 0.45-0.78]) than in older ones (0.80 [95%CI 0.69-0.91]; p=0.09).

Asymptomatic participants
Among the 289 (35.1%) asymptomatic participants at time of sampling, 10.4% (30/289) were positive by RT-PCR with a mean RNA VL of 4.1 log IU/mL (SD 1.9), which was significantly lower than found in symptomatic participants (p<0.001) (Table 1). The P-RDT displayed an overall sensitivity and specificity of 0.43 (95%CI 0.26-0.61) and 1.00 (95%CI 1.00-1.00) respectively (Table 2 and Supplementary Table 1). For specimens with VL >1.0E6 IU/mL, sensitivity was 0.86 (95%CI 0.60-1.00). Mean VL was higher among positive P-RDT specimens than in negative ones (5.5 log IU/mL [SD 1.6] vs 3.0 [SD 1.2]; p<0.001) (Figure 1). Mean viral load did not significantly differ between children <12 years old and older children (4.3 [SD 2.0] vs 3.5 [SD 0.8]; p=0.158).

DISCUSSION

This study prospectively evaluated the diagnostic accuracy of the Panbio™-COVID-19 RDT in the clinical setting in more than 800 symptomatic and asymptomatic children, taking into account VL, DPOS, and clinical parameters such as number and type of symptoms. The study was performed during a period of sustained virus circulation, with an overall positivity RT-PCR rate of 17% among symptomatic participants. The major finding of our work is an overall suboptimal 66% sensitivity of the assay, respectively ranging between 43% and 73% in asymptomatic and symptomatic children. On the other hand, specificity was 100% regardless of the presence or absence of symptoms. It would therefore seem very unlikely that children are unnecessarily sent into quarantine, which is important from a public health perspective. The WHO RDT target product profile cut-off of ≥80% for sensitivity and ≥97% for specificity, was not achieved in terms of sensitivity(12). The relatively low sensitivity of the P-RDT is in line with previous data showing an assay sensitivity of 45-78% among symptomatic children(5, 8, 9), and confirms that the assay sensitivity is lower than that in symptomatic adults in whom the largest studies report sensitivity between 67-92%(2, 3, 5-7).
However, among symptomatic children with high VL, the assay’s sensitivity seemed only marginally lower than symptomatic adults with high VL (6). The suboptimal sensitivity of the assay in children is most likely explained by the increasingly recognized evidence that children have lower SARS-CoV-2 VLs than adults. Indeed, although initial studies suggested similar VLs in adults and children, they were limited in sample size and did not take into account DPOS (13-15), which is a major determinant of VL (16). Recently, studies on larger datasets and/or taking into account DPOS have shown that SARS-CoV-2 infected children have significantly lower VLs than adults (17-19). Another possible explanation for the lower sensitivity could be sampling bias related to the technical challenge of the NPS procedure in children, providing that the swab for P-RDT testing was second one to be performed. False-negative RDT results have also been observed in adult RDT studies, even though less frequently (6) and are unlikely to be caused by SARS-CoV-2 variants. Indeed, no mutation in the N gene possibly causing false-negative RDTs in circulating SARS-CoV-2 variants have been identified and so far, all variants are detected with RDTs with comparable sensitivity to earlier circulating variants (20).

Novel findings in our study relate to the evaluation of P-RDT sensitivity in the light of several factors such as VL, DPOS, type and number of symptoms, which has not been reported so far in the pediatric population. As expected, VL was higher among those with positive P-RDT (true positives) than among those with negative P-RDT (false negatives), as already shown in the adult setting (6). Similarly, and as previously shown in adults (2, 3, 6), sensitivity was correlated with VL, peaking at 97% in specimens with >1.0E7 IU/mL and dropping to 75% in specimens >1.0E3 IU/mL. Sensitivity remained >80% in specimens >1.0E4 IU/mL. However, the presence of false-negative P-RDT results in participants with VLs compatible with shedding of infectious virus is important from a public health perspective as they would not be identified by P-RDT despite being likely contagious. Another interesting finding was the impact of DPOS on the assay sensitivity. Sensitivity was optimal at 2 DPOS, when VL is
expected to peak \((21, 22)\). These findings somehow differ from adult data where sensitivity remained high throughout the first five DPOS (even though lower at 0 DPOS)\((6)\), likely here again reflecting the impact of higher VLs in adults on P-RDT sensitivity. Similarly, the trend towards lower sensitivity in children \(<12 \text{ years old}\) is likely explained by lower VLs in younger children, as seen in this study and other publications \((17-19)\). Among symptomatic participants, sensitivity was better in those with COVID-19 typical symptoms, as previously shown in adults\((6)\) but also in those with \(>2\) symptoms. Interestingly, the sensitivity of P-RDT in children asymptomatic at time of sampling was low at 43%. This is probably related to the fact that asymptomatic children in our dataset had significantly lower VL than symptomatic children.

The strength of our study is related to the large size of a pure pediatric dataset. The large subset of asymptomatic children at time of sampling, and the analysis of diagnostic accuracy based on VL, DPOS, number and specific symptoms represent additional strengths and novelties. With a majority of mild clinical presentation and 25% of asymptomatic among RT-PCR positive cases, our dataset is representative of the majority of SARS-CoV-2 infected children, even though the extent of the pediatric contribution to community transmission is still debated.

Our study has several limitations. First, the evaluation was based on one RDT only. Comparative studies have shown similar or reduced performance of other RDTs when compared to the P-RDT\((6, 23)\). Is it therefore highly unlikely that any RDT would perform significantly better in children than the P-RDT. Second, the study was performed using two different validated RT-PCR assays as gold standards, although 90% of the specimens were tested on the Cobas and VLs were reported in IU/mL, allowing comparison between assays. Third, the study was conducted in a high prevalence setting. Extrapolating the findings to low prevalence settings must be done with caution. Then, providing that the NPS for P-RDT was always performed after the NPS for RT-PCR, one cannot exclude that the second procedure
was more challenging to perform. Finally, we did not evaluate the performance of P-RDT on oropharyngeal, nasal or saliva specimens. However, given the fact that VL is lower in these anatomical compartments when compared to NPS (24-27), one can expect even lower sensitivity of P-RDT if used on oropharyngeal, nasal or saliva specimens. In conclusion, this independent study confirms the respective suboptimal sensitivity of P-RDT in symptomatic children, and its poor sensitivity in asymptomatic children at time of sampling, providing additional evidence for cautious routine use of these tests for the detection of SARS-CoV-2, both in symptomatic and asymptomatic children. This study also highlights the impact of VL, DPOS and clinical presentation on the assay’s sensitivity and show that the sensitivity was ≥80% in participants with medium and high VLs, suggesting reliable identification of contagious individuals (16, 28). However, it should be discussed whether missing individuals with lower VLs is acceptable, since they might subsequently have an increase in their VL and become contagious. Therefore, public health benefits of rapidly identifying infected children should be balanced with the disadvantages of missed diagnoses (29). For individual diagnosis, P-RDT seems a decent alternative to RT-PCR in symptomatic children ≥12 years, especially if tested <5 DPOS based on our findings. For mass pediatric screening, however, such as in school settings or institutions, providing there is no vulnerable contact person, the suboptimal sensitivity of P-RDT is likely outweighed by the advantages of P-RDT, allowing to rapidly identify most infected individuals without the need of a laboratory facility.
Acknowledgements

We thank our medical students (Mélina Ben Allel, Emmanuelle Mohbat, Liv Mahler, James Nef, Mia Lidén, Eloïse Sattonnay, Estelle Delamare, Eva Dufeil, Mariella Baccaro, Micaela Ruef, Natacha Pougner, Sami Uslu, Sara Bekiri, Sara Moreira, Sophie Margot, Thomas Demaurex, Vanesa Redzepi) for their help in the recruitment of patients, nurses and staff of the Pediatric Emergency Department of our institution for their work, as well as participants for their willingness to participate in the study. We also thank Sabine Yerly and Aline Mamin for performing the calibration of the WHO international standard for SARS-CoV-2 RNA.

Funding

The study was supported by the Geneva Centre for Emerging Viral Diseases. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Declaration of interests

The authors have no conflict of interest.
Table 1. Study participants’ demographics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symptomatic (n=533)</th>
<th>Asymptomatic (n=289)</th>
<th>Combined (n=822)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (±IQR)</td>
<td>12.1 (9.4-14.5)</td>
<td>10.9 (8.5-13.7)</td>
<td>11.8 (9.0-14.3)</td>
<td>0.002</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>266 (49.9)</td>
<td>138 (47.8)</td>
<td>404 (49.1)</td>
<td>0.555</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory disease</td>
<td>33 (6.2)</td>
<td>13 (4.5)</td>
<td>46 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>1 (0.2)</td>
<td>3 (1.0)</td>
<td>4 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>2 (0.4)</td>
<td>0</td>
<td>2 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>0</td>
<td>2 (0.7)</td>
<td>2 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>1 (0.2)</td>
<td>0</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Cardiopathy</td>
<td>1 (0.2)</td>
<td>0</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Other immunosuppression</td>
<td>1 (0.2)</td>
<td>0</td>
<td>1 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Chronic liver failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result of RT-PCR, n (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.014</td>
</tr>
<tr>
<td>Negative</td>
<td>444 (83.3)</td>
<td>259 (89.6)</td>
<td>703 (85.5)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>89 (16.7)</td>
<td>30 (10.4)</td>
<td>119 (14.5)</td>
<td></td>
</tr>
<tr>
<td>Mean log RNA IU/mL (±SD)</td>
<td>5.9 (±1.8)</td>
<td>4.1 (±1.9)</td>
<td>5.5 (±2.0)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

RT-PCR: reverse transcription polymerase chain reaction; RNA: ribonucleic acid; IQR: interquartile range; SD: standard deviation
Table 2. Diagnostic accuracy of the Panbio™ RDT

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Symptomatic (95%CI)</th>
<th>Asymptomatic (95%CI)</th>
<th>Combined (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>0.73 (0.64-0.82)</td>
<td>0.43 (0.26-0.61)</td>
<td>0.66 (0.57-0.74)</td>
</tr>
<tr>
<td>Specificity</td>
<td>1.00 (0.99-1.00)</td>
<td>1.00 (1.00-1.00)</td>
<td>1.00 (1.00-1.00)</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>0.98 (0.92-1.00)</td>
<td>1.00 (1.00-1.00)</td>
<td>0.99 (0.96-1.01)</td>
</tr>
<tr>
<td>Negative predictive value</td>
<td>0.95 (0.92-0.97)</td>
<td>0.94 (0.91-0.97)</td>
<td>0.95 (0.93-0.96)</td>
</tr>
</tbody>
</table>

CI: confidence interval
FIGURE TITLES AND LEGENDS

Figure 1. SARS-CoV-2 viral load expressed in log IU/mL among RT-PCR-positive individuals according to Panbio™ RDT results.

RDT: antigen-based rapid diagnostic test; RT-PCR reverse transcription polymerase chain reaction; RNA: ribonucleic acid; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

Figure 2. Sensitivity of Panbio™ RDT according to SARS-CoV-2 viral load expressed in log IU/mL.

RDT: antigen-based rapid diagnostic test; RNA: ribonucleic acid; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

Figure 3. Sensitivity of Panbio™ RDT according to days post onset of symptoms (A) and clinical symptoms (B).

RDT: antigen-based rapid diagnostic test

Collaborative Study for the Establishment of a WHO International Standard for
SARS-CoV-2 RNA. Expert Committee on Biological Standardization.

12. World Health Organization. COVID-19 Target product profiles for priority
diagnostics to support response to the COVID-19 pandemic.
https://www.who.int/publications/m/item/covid-19-target-product-profiles-for-
April 8, 2021.

Age-Related Differences in Nasopharyngeal Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) Levels in Patients With Mild to Moderate Coronavirus

CoV-2 viral load in the upper respiratory tract of children and adults with early acute

Park G, Hardcastle M, St John A, Appleman L, Chiu ML, Fialkowski A, De la
PH, Bonventre J, Yu XG, Ryan ET, Bassett IV, Irimia D, Edlow AG, Alter G,
Li JZ, Fasano A. 2020. Pediatric Severe Acute Respiratory Syndrome Coronavirus 2

16. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Muller MA,
Niemeyer D, Jones TC, Vollmar P, Rothe C, Hoelscher M, Bleicker T, Brunink S,

Figure 1. SARS-CoV-2 viral load expressed in log IU/mL among RT-PCR-positive individuals according to Panbio™ RDT results.

RDT: antigen-based rapid diagnostic test; RT-PCR reverse transcription polymerase chain reaction; RNA: ribonucleic acid; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
Figure 2. Sensitivity of Panbio™ RDT according to SARS-CoV-2 viral load expressed in log IU/ml.

RDT: antigen-based rapid diagnostic test; RNA: ribonucleic acid; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2
Figure 3. Sensitivity of Panbio™ RDT according to days post onset of symptoms (A) and clinical symptoms (B).

RDT: antigen-based rapid diagnostic test
SUPPLEMENTARY MATERIAL

Supplementary Figure 1. Study Flowchart

- Pediatric patients enrolled (n=885)
 - Excluded (n=1)
 - Did not meet inclusion criteria (screening error; n=1)
- RT-PCR proposed (n=884)
 - Excluded (n=1)
 - Refused RT-PCR (n=1)
- RT-PCR performed (n=883)
- Ag-RDT proposed (n=883)
 - Excluded (n=58)
 - Refused Ag-RDT (n=58)
- Ag-RDT performed (n=825)
 - Excluded (n=3)
 - Ag-RDT result not reported (n=2)
 - Ag-RDT result invalid (n=1)
- Completed Study (n=822)

RDT: antigen-based rapid diagnostic test; RT-PCR reverse transcription polymerase chain reaction
Supplementary Table 1. RT-PCR and Panbio™ RDT results

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>P-RDT + /</th>
<th>P-RDT – /</th>
<th>P-RDT + /</th>
<th>P-RDT – /</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RT-PCR +</td>
<td>RT-PCR +</td>
<td>RT-PCR –</td>
<td>RT-PCR –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(True positive)</td>
<td>(False negative)</td>
<td>(False positive)</td>
<td>(True negative)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>533</td>
<td>65</td>
<td>24</td>
<td>1</td>
<td>443</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>289</td>
<td>13</td>
<td>17</td>
<td>0</td>
<td>259</td>
</tr>
<tr>
<td>Combined</td>
<td>822</td>
<td>78</td>
<td>41</td>
<td>1</td>
<td>702</td>
</tr>
</tbody>
</table>

RDT: antigen-based rapid diagnostic test; P-RDR: Panbio™ RDT; RT-PCR reverse transcription polymerase chain reaction
Supplementary Table 2. Study participants’ demographics according to age group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>< 12 years old</th>
<th>≥ 12 years old</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (±IQR)</td>
<td>9.3 (6.2-10.6)</td>
<td>14.4 (13.3-15.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Female sex, n (%)</td>
<td>194 (44.8)</td>
<td>210 (54.0)</td>
<td>0.009</td>
</tr>
<tr>
<td>Comorbidities, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic respiratory disease</td>
<td>24 (5.5)</td>
<td>22 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Obesity</td>
<td>8 (1.8)</td>
<td>17 (4.4)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>2 (0.5)</td>
<td>2 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1 (0.2)</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>0</td>
<td>2 (0.5)</td>
<td></td>
</tr>
<tr>
<td>Cardiopathy</td>
<td>0</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Other immunosuppression</td>
<td>0</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Chronic liver failure</td>
<td>1 (0.2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Result of RT-PCR, n (%)</td>
<td></td>
<td></td>
<td>0.352</td>
</tr>
<tr>
<td>Negative</td>
<td>375 (86.6)</td>
<td>328 (84.3)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>58 (13.4)</td>
<td>30 (15.7)</td>
<td></td>
</tr>
<tr>
<td>Mean log RNA copies/mL (±SD)</td>
<td>5.0 (±2.0)</td>
<td>5.9 (±1.9)</td>
<td>0.011</td>
</tr>
</tbody>
</table>

RT-PCR: reverse transcription polymerase chain reaction; RNA: ribonucleic acid; IQR: interquartile range; SD: standard deviation.
Supplementary Table 3. Characteristics of symptomatic study participants

Symptomatic

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>297 (55.7)</td>
</tr>
<tr>
<td>Nasal Discharge</td>
<td>296 (55.5)</td>
</tr>
<tr>
<td>Cough</td>
<td>237 (44.5)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>235 (44.1)</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>219 (41.1)</td>
</tr>
<tr>
<td>Fever</td>
<td>149 (30.0)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>106 (19.9)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>84 (15.8)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>79 (14.8)</td>
</tr>
<tr>
<td>Reduced intake</td>
<td>77 (14.4)</td>
</tr>
<tr>
<td>Chills</td>
<td>45 (8.4)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>43 (8.1)</td>
</tr>
<tr>
<td>Shortness of breath</td>
<td>42 (7.9)</td>
</tr>
<tr>
<td>Dysguesusia/agueusia</td>
<td>36 (6.8)</td>
</tr>
<tr>
<td>Anosmia</td>
<td>35 (6.6)</td>
</tr>
<tr>
<td>Nausea</td>
<td>25 (4.7)</td>
</tr>
<tr>
<td>Irritability</td>
<td>10 (1.9)</td>
</tr>
</tbody>
</table>

Median DPOS to RT-PCR (±IQR)

2.0 (1.0-3.0)

RT-PCR: reverse transcription polymerase chain reaction;
DPOS: days post onset of symptoms; IQR: interquartile range