Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria

Pamela J. B. Brown,¹ David T. Kysela,¹ Aaron Buechlein,² Chris Hemmerich,² and Yves V. Brun¹,²*

Department of Biology¹ and Center for Genomics and Bioinformatics,² Indiana University, Bloomington, Indiana 47405

Received 3 June 2011/Accepted 15 June 2011

The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

Prosthecae or stalks are found in a morphologically diverse group of Gram-negative bacteria belonging primarily to the class Alphaproteobacteria. The stalked Alphaproteobacteria typically have a characteristic dimorphic life cycle in which two dissimilar cell types are produced by asymmetric cell division (2, 4, 8–10, 17, 18). The swarmer progeny cells are motile and do not replicate DNA. The start of the new cell division cycle is coincident with the differentiation of the swarmer cell into a stalked cell. Stalks are true extensions of the cell body and are an integral part of the cell, bounded by both the cell membranes and the cell wall, and form a thin cylindrical extension of the cell surface layer (10). Stalks are essential for the reproduction of a subset of prosthecate bacteria, including Rhodomicrobium and Hyphomicrobium, which divide by budding, in which the daughter cell develops at and is later released from the tip of the stalk. The stalks of both budding and nonbudding prosthecate bacteria have been implicated in nutrient uptake and are likely to be particularly advantageous in oligotrophic habitats (5, 14–16, 18).

To facilitate an enhanced understanding of the function of stalks, the mechanism of budding, and regulation of dimorphic life cycles, the genomes of three nonbudding stalked bacteria, three budding stalked bacteria, and two closely related nonstalked bacteria were sequenced. The nonbudding stalked bacteria include Brevundimonas subvibrioides, Asticcacaulis biprosthecum, and Asticcacaulis excentricus. The budding stalked bacteria include Hirschia baltica, Rhodomicrobium vannielii, and Hyphomicrobium denitrificans. Finally, the nonstalked,

<table>
<thead>
<tr>
<th>Organism</th>
<th>Reference</th>
<th>GenBank accession no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asticcacaulis biprosthecum C19</td>
<td>9 PD</td>
<td>NZ_ADUH00000000</td>
</tr>
<tr>
<td>Asticcacaulis excentricus CB48</td>
<td>10 F</td>
<td>Chromosome 1, NC_014816</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chromosome 2, NC_014817</td>
</tr>
<tr>
<td>Brevundimonas diminuta ATCC 11568</td>
<td>13 PD</td>
<td>3,002</td>
</tr>
<tr>
<td>Brevundimonas subvibrioides ATCC 15264</td>
<td>1 F</td>
<td>NC_014375</td>
</tr>
<tr>
<td>Caulobacter segnis ATCC 21756</td>
<td>1 F</td>
<td>NC_014375</td>
</tr>
<tr>
<td>Hirschia baltica ATCC 49814</td>
<td>12 F</td>
<td>Chromosome, NC_012982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pHba101 NC_012983</td>
</tr>
<tr>
<td>Hyphomicrobium denitrificans ATCC 51888</td>
<td>11 F</td>
<td>3,512</td>
</tr>
<tr>
<td>Rhodomicrobium vannielii ATCC 17100</td>
<td>18 F</td>
<td>NC_014664</td>
</tr>
</tbody>
</table>

* Corresponding author. Mailing address: Department of Biology, Indiana University, Bloomington, IN 47405. Phone: (812) 855-8860. Fax: (812) 855-6705. E-mail: ybrun@indiana.edu.

† Published ahead of print on 24 June 2011.
nonbudding bacteria Caulobacter segnis and Brevundimonas diminuta were sequenced. Characteristics of the sequenced genomes are provided in Table 1.

Finished genomes were sequenced as part of the Department of Energy (DOE) Joint Genome Institute (JGI) Community Sequencing Program 2008 using a combination of Sanger, 454, and Illumina methods as described at the JGI website (http://www.jgi.doe.gov/sequencing/protocols/protocols_production.html) and were annotated using the JGI-Oak Ridge National Laboratory annotation pipeline (7). Permanent draft genomes were sequenced by the Center for Genomics and Bioinformatics at Indiana University using standard 454 methods to obtain 17× coverage for A. biprosthecum and 58× coverage for B. diminuta. Permanent draft genomes were annotated using the Integrative Services for Genomic Analysis annotation pipeline (3). All genome annotations were loaded into the JGI Integrated Microbial Resource for analysis (6). Further analysis and comparisons of the genomes sequenced in this work are expected to provide insights into the generation of bacterial morphology, survival in oligotrophic environments, and the evolution of differing modes of bacterial cell growth.

Nucleotide sequence accession numbers. GenBank accession numbers for all of the chromosomes and plasmids sequenced in this study are shown in Table 1.

Y.V.B. was funded by the National Institutes of Health (GM051986 and GM077648) and by the National Science Foundation (MCB0731950). The sequencing of finished genomes was conducted as part of the DOE JGI 2008 Community Sequencing Project (787681) awarded to Y.V.B. The DOE JGI is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. P.J.B.B. and D.T.K. were supported by National Institutes of Health National Research Service Awards AI072992 and GM083581. This work was supported in part by the Indiana Metabolomics and Cytomics Initiative of the Lilly Endowment, Inc.

REFERENCES
10. Poindexter, J. S. 1964. Biological properties and classification of the Caulo-