Exercise induced global and personalized changes in clinical and biochemical profiles of NAFLD patients
Forty-two subjects (25 women, 17 men) from Finland participated in this 12-week HIIT (details have been published before [
28]). The subjects in the intervention (I) and control (C) groups were similar in age (I, 59.9 ± 9.8 years; C, 56.7 ± 10.7 years), BMI (I, 29.7 ± 3.2; C, 29.5 ± 4.3), and fitness levels measured as maximum oxygen consumption (VO
2max) (I, 23.7 ± 4.0 mL/kg/min; C, 25.1 ± 5.3 mL/kg/min). During the intervention fasting, plasma glucose concentration and waist circumference decreased significantly (GLM,
P < 0.05), whereas the maximum rate of oxygen consumption (VO
2max) and maximum achieved workload (maxW) increased significantly compared to the control group (normalized to baseline, GLM,
P < 0.05). The IHL content did not change significantly during the intervention in either group (GLM,
P > 0.05). For the metagenomics analyses, stool samples from one subject in the intervention group and two subjects from the control group were excluded since these subjects used antibiotics during the intervention.
Interestingly, the IHL content in the intervention group increased in some participants, suggesting a heterogeneous response to exercise. Therefore, the intervention group (
N = 20) was further sub-divided into responders (
N = 13) and non-responders (
N = 7) based on decreased or increased IHL content during the 12-week HIIT intervention. Baseline characteristics did not differ between the responders and nonresponders except for food intake (
Table 1). A significantly higher intake of total fat and saturated fat (SFA) (
t-test,
P < 0.05) was reported at baseline in the nonresponder group compared to the responders.
During the 12-week intervention, there were significant differences in the fold changes of the concentrations of plasma triglycerides (TGs) and ApoB, visceral fat area and body fat mass in kilogram and percentage (normalized to baseline, GLM,
P < 0.05;
Table 1) when comparing responders with non-responders. There was also a significant change in body weight in the responders (GLM,
P < 0.05); however, 900 g of weight loss in 12 weeks is not considered clinically significant. We observed a statistically non-significant trend toward reduced concentrations of TC, GGT, and LDL-C in the responders compared to non-responders (GLM,
P = 0.081, 0.081, and 0.076, respectively). These trends are in line with previous aerobic exercise studies in NAFLD subjects, which have reported decreases in IHL and decreases in triglyceride (TG), ApoB, LDL-C, and TC concentrations (
31 – 34). Although our results did not reach statistical significance, these findings may suggest that aerobic exercise has a favorable effect on lipid metabolism in NAFLD patients. Despite the instructions not to change the diet, the intake of total fat (GLM,
P < 0.05) and monounsaturated fat (MUFA) (GLM,
P < 0.05) was significantly different between the groups at the end of the 12-week intervention (
Table 1). No significant differences were observed in SFA intake (GLM,
P = 0.645) between the two groups during the intervention.
Microbiome variance during exercise is associated with markers of liver and glucose metabolism
Shotgun metagenomics sequencing of stool samples from baseline and endpoint was used to examine the GM change during exercise. We sequenced an average of 20.1 gigabase pairs of high-quality reads per sample from 78 stool samples [control group at baseline (
N = 20), control group at week 12 (
N = 19), intervention group at baseline (
N = 20), and intervention group at week 12 (
N = 19)]. MetaPhlAn3 (
35) was used for taxonomic profiling and identified 129 genera and 363 species across all samples. We measured the community alpha diversity as Shannon and Chao1 indices and calculated also the weighted/unweighted UniFrac distance and Aitchison distance of the control and intervention groups, at baseline and 12 weeks. However, there were no statistically significant differences induced by exercise within and between the groups (Wilcoxon signed-rank test, Wilcoxon rank-sum test, and PERMANOVA,
P > 0.05) (
Fig. 1a;
Table S1).
Next, we applied dbRDA (from R package vegan) to evaluate the association of the metadata with the GM taxonomic and functional composition (
Fig. 1b). Many significant correlations between the clinical variables and the GM variance were discovered in univariate analysis (dbRDA,
P < 0.05). More than 20 covariates including the liver-related parameters, such as IHL, concentrations of aspartate aminotransaminase (AST), alanine transaminase (ALT), GGT, plasma total and lipoprotein lipids, ApoA1, ApoB, and fasting insulin and glucose, showed a significant correlation (dbRDA,
P < 0.05) to the GM composition at the genus and species levels. Exercise parameters like VO
2max and maxW, which were found to be significantly different (normalized to baseline, GLM,
P < 0.05) between the intervention group and the control group, were found also significantly correlated with the species diversity. Moreover, IHL and concentrations of AST and ALT were significantly associated (dbRDA,
P < 0.05) with the functional variance of the microbiota. In the non-redundant analysis, 16, 28, and 3 of the significant covariates accounted for 25.2%, 32.9%, and 9.0% non-redundant variance in the genus, species, and pathway profiles, respectively. Significant covariates like IHL, concentrations of ALT, GGT, TG, high-density lipoprotein cholesterol (HDL-C), fasting glucose, and VO
2max and maxW had a significant correlation (dbRDA,
P < 0.05) with the GM composition, and IHL remained significantly correlated (dbRDA,
P < 0.05) with the functional variance of the microbiota.
Bacteroides,
Dorea, and
Ruminococcus, known as short-chain fatty acid (SCFA) producers, which were found previously in higher abundances in NAFLD subjects compared to controls, were found as part of the 10 most abundant genera in our study (
Fig. 2a) (
6,
36,
37).
Faecalibacterium prausnitzii found previously lower abundance in T2DM and obese people was the most abundant species in our subjects (
Fig. 2a) (
6). To find out the potential taxa responding to the exercise intervention, we analyzed (i) taxa whose abundance changed significantly only in the intervention group but not in the control group (zero-inflated Gaussian mixture model,
P < 0.05) and (ii) taxa that differed significantly between the two groups at the end of the study but not at baseline (zero-inflated Gaussian mixture model,
P < 0.05). We found in total seven genera and 19 species meeting these criteria; however, none of these 10 most abundant genera and species including
Bacteroides,
Dorea,
Ruminococcus and
Faecalibacterium prausnitzii was in this list (
Fig. 2b;
Table S2).
In addition, we identified 456 pathways across all samples using HUMAnN3 as the functional pathway’s profile annotation tool. Similar to the taxonomic profile, the functional potential of the microbiota was unable to distinguish within or between the groups based on alpha and beta diversity (PERMANOVA,
P > 0.05) (
Fig. 1a). We compared the individual pathways between the two groups using similar criteria as in the taxonomy profile. In total, 30 pathways met these criteria, yet none of the most abundant pathways including pathways previously associated with NAFLD, such as isoleucine and valine (PWY-6386, PWY-6387, ILEUSYN-PWY, and VALLSYN-PWY) (
38), was part of this list of significantly different pathways (
Fig. 2c).
Exercise intervention altered significantly the gut microbiome interactome
To investigate the direct and indirect interactions within the bacterial community, we applied the R package DGCA (v2.0.0) (
39), which takes the correlations between species in both before and after the exercise intervention into account and constructed a differential correlation network using the detected species in all samples. Our network displayed only the significant differential correlations among species (
P < 0.05) and contained 66 nodes and 68 edges, representing the differentially correlated species pairs and the type of change in the observed correlations between these species, respectively (
Fig. 2a see Materials and Methods). The exercise intervention induced 18 positive associations between species, including one association that was found negative before the exercise but turned positive during the 12-week intervention (−/+) and 17 that were not observed at baseline but only at week 12 (0/+). There were also 13 negative associations caused by the exercise intervention, including one that was positive at baseline but turned negative at week 12 (+/−) and 12 that were not seen at baseline but only at the week 12 (0/−). Additionally, 16 negative (−/0) and 21 positive (+/0) associations which were found at baseline were lost during the intervention. Overall, the direction and/or strength of the 68 correlation pairs implied that the exercise reshaped the bacterial interactions within the GM.
Our network analysis revealed three GM species modules (
Fig. 3a), from now on referred to as Module 1, Module 2, and Module 3. There were 18 species in Module 1, 14 species in Module 2, and 17 species in Module 3. We then surveyed the three modules for differentially abundant species (zero-inflated Gaussian mixture model,
P < 0.05). We found the species
Alistipes putredinis,
Bacteroides cellulosilyticus,
Lactococcus lacti, and
Roseburia sp
CAG 309 in Module 1 to be significantly higher in the exercise intervention group compared to the control group (FDR = 0.02–0.14).
A. putredinis and
L. lacti were found decreased in a cohort study in cirrhosis patients and found to improve NAFLD progression in mice models (
40,
41). In Module 2, we found
Coprococcus eutactus significantly increased (Week 0 vs Week 12) in the exercise intervention group but not in the control group (FDR = 0.18).
C. eutactus has been reported to be more abundant in healthy individuals than in individuals with NAFLD and suggested as probiotic bacteria against NAFLD (
42). In the same module, we found
Dorea formicigenerans and
Eisenbergiella massiliensis having significantly higher relative abundance in the exercise intervention group when compared to the control (FDR = 0.044–0.145). Two species in Module 3 also showed significantly different abundances in the two groups:
Lactobacillus acidophilus was found significantly lower in the exercise intervention group compared to the control group (FDR = 0.0008) and
Clostridium sp
CAG 58 had significantly higher abundance in the intervention group compared to the control group (FDR = 0.14).
Next, we performed enrichment analysis in these three modules to evaluate the implication of GM restructuring following the exercise (see Materials and Methods section). No significant association was found between Module 1 and any clinical parameters. However, we found Module 2 had associations with waist, resting metabolic rate (RMR), and TG, and Module 3 had associations with concentrations of fasting glucose and insulin, HbA1c, and HOMA-IR (
Fig. 3a). Therefore, we then specifically focused on Module 2 and Module 3 to study the association between their bacterial members, the significant GM functional pathways (zero-inflated Gaussian mixture model,
P < 0.05), and the significant clinical parameters (GLM,
P < 0.05) in more detail.
An alluvial plot (
Fig. 3b) was used to integrate the connections between the bacterial modules, pathways, and clinical parameters. We observed a high number (81%) of positive correlations between the functional potential of the microbiome and Module 2.
Bilophila wadsworthia and
Escherichia coli in Module 2 had the most correlations. Many of the pathways were positively correlated with significant decreased plasma glucose concentration and waist circumference. A previous study showed that
B. wadsworthia was positively correlated with fasting glucose concentration and aggravates high fat–induced metabolic functions including increased IHL content (
43). In addition, there was a negative correlation between
B. wadsworthia and
C. eutactus observed after the exercise intervention (
Fig. 3a), suggesting that decreased
B. wadsworthia levels might facilitate the significant growth of
C. eutactus.
C. eutactus was previously found at lower levels in NAFLD subjects compared to healthy subjects and an increase could alleviate NAFLD progression (
42,
44). The biosynthesis pathways of thiazole and polyamine and the nitrate reduction and protocatechuate degradation pathways had the highest number of correlations with the species in Module 2 (
Fig. S2a, significantly correlated with at least five species, partial Spearman correlation,
P < 0.05). It has been suggested that polyamine, nitrate, and protocatechuate play a role in obesity, NAFLD, and NASH (
45 – 47).
Unlike Module 2, the majority of the correlations (66%) we observed between Module 3 and the microbiota pathways were negative.
Bifidobacterium adolescentis and
Lactobacillus acidophilus had the most correlations with the pathways. The relative abundance of
B. adolescentis, a species that was reported to alleviate liver steatosis in mice (
48), tended to increase during the 12-week intervention in the intervention group (
P > 0.05). Interestingly,
L. acidophilus which is known to be beneficial against NAFLD (
49) decreased after the intervention in the intervention group (
P < 0.05, FDR = 0.0008). The butanediol, menaquinol, methane, factor 420 biosynthesis pathways showed the most correlations with the species in Module 3 (significantly correlated with at least four species, partial Spearman correlation,
P < 0.05) (
Fig. S2a). Higher bacterial menaquinol production is associated with fibrosis in NAFLD patients (
50). Furthermore, we found the protocatechuate degradation, which was positively correlated with
L. acidophilus (partial Spearman correlation,
P < 0.05), and the biosynthesis pathways of galactose, arginine, and polyamine mostly correlated with the clinical profile (significantly correlated with at least seven clinical parameters, partial Spearman correlation,
P < 0.05) (
Fig. S2b). Arginine was proposed to be a potential therapy for NAFLD when it conjugates with bile acids (
51).
According to our differential correlation analysis, exercise had a significant impact on the microbial interactome. We identified three bacterial modules with a high number of differential correlations induced by exercise, which involved some significantly differential abundant species with a reported role in NAFLD progression. Modules 2 and 3 were correlated with clinical metabolic measurements associated with NAFLD, such as TG, insulin, and HOMA-IR (
Fig. 2a), suggesting the potential implication of these bacterial consortia to synergistically affect clinical parameters during exercise.
Network analysis suggested potential gut microbiota contributions in exercise responsiveness
We subsequently investigated the gut microbiota of the responders (13 subjects had decreased IHL) and non-responders (seven subjects had increased IHL) within the exercise intervention group using differential correlation network and enrichment analysis as above. The species’ alpha and beta diversity showed no significant difference within or between the responders and non-responders (
Fig. S3). The responder network displaying only the significant differential correlations (
P < 0.05) contained 43 nodes and 34 edges. The exercise intervention resulted in total of 16 new correlations in the responders, including three associations that were not observed at baseline but became positive at week 12 (0/+) and 13 that were not observed at baseline but found negative at week 12 (0/−). Also, 18 correlations were lost during the intervention, including nine that were found negative at baseline but were lost during the 12-week intervention (−/0) and nine that were positive at baseline but disappeared during the 12-week intervention (+/0).
This differential correlation network also revealed three GM modules in the responder group (
Fig. 4a). There were four species in Module 1, seven species in Module 2, and four species in Module 3. The enrichment analysis in the three modules revealed that Module 1 was significantly associated with fat mass percentage; Module 2 had significant associations with plasma TG concentration, HbA1c, and intake of SFA; and Module 3 was significantly associated with systolic blood pressure and plasma asparagine transferase (AST) concentration. We examined the species abundances present in these modules using similar criteria as in the analysis above for the exercise intervention group. We found no species in Module 1 and Module 2 with statistically significant abundance changes. In Module 3, we found two species significantly different in relative abundance between the responder and non-responder group at the end of the study but not at baseline, including
Bacteroides thetaiotaomicron and
Bacteroides faecis, which were significantly lower and higher in responder, respectively (zero-inflated Gaussian mixture model, log2FC = −0.23 and 1.46,
P < 0.05, FDR = 0.056 and 0.091;
Table S3).
We subsequently built an alluvial plot (
Fig. 4b) integrating the bacterial modules, functions, and clinical parameters. The strongest influence on clinical parameters in Module 1 came from
Bacteroides dorei. This bacterium is shown to lower lipopolysaccharide production in the gut (
52). The pathways of creatinine and protocatechuate degradation had significant correlations with the species in Module 1 (partial Spearman correlation,
P < 0.05;
Fig. S4a). There were previous studies suggesting that creatinine and protocatechuate are associated with NAFLD (
47,
53). HbA1c, concentrations of fasting glucose, ALT and GGT, visceral fat area, and fat mass were also significantly negatively correlated with these pathways (partial Spearman correlation,
P < 0.05;
Fig. S4b).
The main contributors of Module two impacting the clinical parameters included
B. caccae and
Bacteroides cellulosilyticus. Both were slightly decreased in the responder group. These two species were found to be higher in advanced fibrosis in NAFLD (
54,
55), but
B. cellulosilyticus seems also to be associated with a healthy fasting lipid profile (
56). The increased alanine fermentation (to propionate and acetate) pathway, which is negatively associated with concentrations of AST, insulin, LDL-C and GGT, weight, fat mass, and visceral fat area, was correlated with bacteria only from Module 2 (
Fig. 4b;
Fig. S4b).
B. faecis and
Catenibacterium mitsuokai in Module 3 had the most associations with the pathways. We found
B. faecis significantly increased at week 12 in the responder group (zero-inflated Gaussian mixture model,
P < 0.05) and was also negatively correlated with the methanol degradation pathway, which has associations with decreased concentrations of liver enzymes ALT and AST (
Fig. S4b).
B. faecis was also found previously to be increased after decreased liver fat and was negatively associated with inflammatory markers such as monocyte chemoattractant protein-1 (MCP-1), chemokine ligands 4 (CCL4), matrix metalloproteinase-1 (MMP-1), and tumor necrosis factor-alpha (
57). Moreover, a negative correlation between insulin resistance and this bacterium was noticed in another study (
56). There was a negative association between
B. faecis and
B. thetaiotaomicron (
Fig. 4a).
B. thetaiotaomicron from Module 3, which significantly decreased in responders, was significantly correlated with glycogen degradation (partial Spearman correlation,
P < 0.05).
We took a closer look into the functional profile and specifically the associations between species and pathways, and the associations between pathways and clinical parameters (
Fig. S4). We observed that creatinine degradation pathway, which was negatively correlated with HbA1c and fasting glucose concentration, showed the most correlations with the species in the three modules (significantly correlated with at least three species, partial Spearman correlation,
P < 0.05). The gut microbiota functional potential in methanol oxidation and alanine fermentation (to propionate and acetate) had the most correlations with the clinical profile (significantly correlated with at least seven clinical parameters, partial Spearman correlation,
P < 0.05).
B. dorei and
B. faecis were significantly negatively correlated with the methanol oxidation pathway.
Previous microbiota network analyses in diseases showed the importance of the microbial interactome. For example, disturbances in the microbial network of Crohn’s disease might affect the relapse of the disease and non-response to antibody treatment (
19). In addition, a recently published study about the microbial interactome in subjects with bronchiectasis exacerbations revealed differences in the numbers and directions of interactions of shared microbes between low- and high-frequency exacerbation clusters (
9). This suggests that not the abundance of the microbe but more the interaction of the microbe with others are relevant for the disease outcome (
9).
Our study uncovered besides differences in abundances of microbes in the intervention and control, changes in the bacterial interaction pattern. Species such as
B. wadsworthia that are not significantly different between the groups but has several interactions with the pathway influenced the significant clinical outcomes (
Fig. 4) and has also interaction with a significantly changed species (
C. eutactus) suggesting an important player in the improvement of NAFLD progression performing exercise besides its absence of significance abundance between and within the groups. In addition, species in the interactome of responders and non-responders (e.g.,
Catenibacterium mitsuokai) were also non-significant in the richness but interacted with a significantly changed species (
B. faecis), and both were associated with pathways that correlated with clinical outcomes in this module (
Fig. 4). Therefore, the microbiota richness alone might not be a sufficient indicator of microbes’ impact on the microbiome and clinical events (
9) but rather cooperation and competition in their ecosystem. Finally, the small cohort size of our study may have prevented us from detecting some species with significant interactions with clinical parameters in the abundance analysis. Despite this limitation, our study revealed significant changes in the bacterial interaction pattern, highlighting the potential importance of microbial cooperation and competition in the microbiome and clinical outcomes.