Open access
Announcement
4 June 2020

Complete Genome Sequence of a SARS-CoV-2 Strain Isolated in Northern Germany

ABSTRACT

Here, we describe the complete genome sequence of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain isolated from an oropharyngeal swab sample from a female patient with COVID-19 who was infected in Hamburg, northern Germany.

ANNOUNCEMENT

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China, as the alleged cause of a cluster of severe pneumonia cases (1). The virus has since spread worldwide, affecting more than 3.6 million people and causing more than 250,000 deaths by 5 May 2020; the disease was named COVID-19. Taxonomic classification placed the novel virus within the subgenus Sarbecovirus, genus Betacoronavirus, family Coronaviridae, order Nidovirales (2).
Here, we describe the full-genome sequence of a SARS-CoV-2 strain (SARS-CoV-2/human/DEU/HH-1/2020) isolated from a female patient with COVID-19. The infection was acquired in Hamburg, northern Germany. All studies were carried out in keeping with local legal and regulatory requirements. Written informed consent was obtained from the patient. Also, approval by the local ethics committee (Ethik-Kommission Ärztekammer Hamburg) was obtained (approval number PV7306).
The isolate was obtained from an upper respiratory tract specimen (oropharyngeal swab) from a 62-year-old woman who was part of a small local cluster of COVID-19 cases, originating from a household contact who likely acquired the virus while traveling in Italy. The patient herself did not show any signs or symptoms at the time the sample was taken (3). The swab sample (ESwab; Copan, Italy) tested SARS-CoV-2 RNA positive at the Institute for Microbiology, Virology, and Hygiene at the University Medical Center Hamburg-Eppendorf by real-time reverse transcription-PCR (RT-PCR), as described previously (4). For virus isolation, 500 μl of the remaining (not inactivated) ESwab medium was used for adsorption on Vero cells (ATCC CRL-1586) seeded in T25 flasks. After 1 h at 37°C, the ESwab medium was replaced by cell culture medium (Dulbecco’s modified Eagle’s medium containing 3% fetal calf serum, 1% penicillin-streptomycin, 1% l-glutamine [200 mM], 1% sodium pyruvate, and 1% nonessential amino acids [all from Gibco/Thermo Fisher Scientific, Waltham, MA, USA]). Cells were monitored daily for cytopathic effect (CPE). No CPE was observed until day 4, but virus growth was confirmed by real-time RT-PCR. Additional experiments revealed that infection of different Vero cells (ATCC CCL-81) resulted in a strong CPE at ∼24 to 48 h postinfection.
For sequencing of the viral RNA, nucleic acid extraction was performed automatically using the QIAsymphony DSP virus/pathogen kit and 200 μl cell culture supernatant (supplemented 1:1 with Roche PCR medium for inactivation). An RNA Illumina next-generation sequencing (NGS) library was prepared from the sample using the SMARTer stranded total RNA-Seq kit v2-pico input mammalian (TaKaRa Bio Europe, Saint-Germain-en-Laye, France). The library was multiplexed and sequenced (10 samples were included) on an Illumina NextSeq instrument according to the manufacturer’s protocol.
A total of 18,971,906 paired-end 76-nucleotide (nt) reads (2,883,729,712 bp) were generated by the Illumina NextSeq sequencer. Bases with a score of less than Q30, as well as adapter sequences of the reads, were trimmed and any reads shorter than 35 nt were removed using Trimmomatic v0.36 (5). The samples after trimming contained 18,369,904 high-quality paired-end reads, with 61,312 × 2 reads (e.g., 122,624 reads) mapping to the reference Wuhan-Hu-1 sequence (GenBank accession number NC_045512.2) (6). The mapped reads were used as input data for the SPAdes assembler (v3.13.0) (7), resulting in a single, positive-stranded RNA of 29,870 bp, with no gaps and a mean coverage depth of 289.1×. There were no missing bases in the untranslated regions (UTRs), in either the 5′ UTR or the 3′ UTR [excluding the poly(A) tail], compared with the reference genome. The Prokaryotic Genome Annotation Pipeline (PGAP) (8) identified 10 putative open reading frames (ORFs) in the putative complete genome of the HH-1 isolate. The variants were called with the tool freebayes (9). As shown in Table 1, a total of five single-nucleotide polymorphisms and one multinucleotide polymorphism were detected. Overall, the genome of the isolate HH-1 has 99.97% nucleotide identity with the reference Wuhan-Hu-1 genome (as analyzed with the software EMBOSS:6.6.0.0 water), suggesting a high degree of similarity between them. Default parameters were used for all software unless otherwise specified.
TABLE 1
TABLE 1 Nucleotide variants of the SARS-CoV2 sequence of the HH-1 isolate, in comparison to the reference strain (GenBank accession number NC_045512.2)
Nucleotide positionReference nucleotide(s)HH-1 nucleotide(s)Variant typeNucleotide changeaAmino acid change (position)Gene name
160 (noncoding)GAUpstream gene variantNANANA
241 (noncoding)CTUpstream gene variantNANANA
3037CTSynonymous variantttC/ttTPhe to Phe (924)ORF1ab
14408CTMissense variantcCt/cTtPro to Leu (4705)ORF1ab
23403AGMissense variantgAt/gGtAsp to Gly (614)S
28881GGGAACMissense variantaGGGga/aAACgaArg/Gly to Lys/Arg (203)N
a
Lowercase letters indicate homology of nucleotides, and uppercase letters indicate nucleotide positions with changes. NA, not applicable.
Additional epidemiological and clinical features of this case of COVID-19 were reported in references 1 and 3.

Data availability.

This sequence has been deposited in GenBank under the accession number MT318827. The accession numbers for the Illumina NextSeq sequencing raw reads in the NCBI Sequence Read Archive (SRA) are PRJNA624231 (BioProject), SRR11517432 (SRA), and SAMN14572083 (BioSample).

ACKNOWLEDGMENTS

We are grateful to Svenja Reucher and Kerstin Reumann for excellent technical assistance.

REFERENCES

1.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733.
2.
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544.
3.
Pfefferle S, Kobbe R, Guenther T, Noerz D, Santer R, Oh J, Kluge S, Oestereich L, Peldschus K, Indenbirken D, Huang J, Grundhoff A, Aepfelbacher M, Knobloch J, Fischer N, Luetgehetmann M. 2020. Infection control and virological assessment of the first cluster of COVID-19 in northern Germany. SSRN.
4.
Pfefferle S, Reucher S, Nörz D, Lütgehetmann M. 2020. Evaluation of a quantitative RT-PCR assay for the detection of the emerging coronavirus SARS-CoV-2 using a high throughput system. Eurosurveillance 25:2000152.
5.
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.
6.
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Hu Y, Song Z-G, Tao Z-W, Tian J-H, Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang Y-Z. 2020. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv.
7.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477.
8.
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624.
9.
Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv 1207.3907. https://arxiv.org/abs/1207.3907.

Information & Contributors

Information

Published In

cover image Microbiology Resource Announcements
Microbiology Resource Announcements
Volume 9Number 234 June 2020
eLocator: 10.1128/mra.00520-20
Editor: John J. Dennehy, Queens College

History

Received: 12 May 2020
Accepted: 20 May 2020
Published online: 4 June 2020

Contributors

Authors

Susanne Pfefferle
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Jiabin Huang
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Dominik Nörz
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Daniela Indenbirken
Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
Marc Lütgehetmann
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Lisa Oestereich
Bernhard Nocht Institute, Leibniz Institute for Tropical Medicine, Hamburg, Germany
Thomas Günther
Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
Adam Grundhoff
Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
Martin Aepfelbacher
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
Nicole Fischer
Institute for Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Editor

John J. Dennehy
Editor
Queens College

Notes

Address correspondence to Susanne Pfefferle, [email protected].
Susanne Pfefferle and Jiabin Huang contributed equally to this work. Author order was determined reverse-alphabetically.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures

Tables

Media

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy