1 March 1995

Phylogenetic identification and in situ detection of individual microbial cells without cultivation

Abstract

The frequent discrepancy between direct microscopic counts and numbers of culturable bacteria from environmental samples is just one of several indications that we currently know only a minor part of the diversity of microorganisms in nature. A combination of direct retrieval of rRNA sequences and whole-cell oligonucleotide probing can be used to detect specific rRNA sequences of uncultured bacteria in natural samples and to microscopically identify individual cells. Studies have been performed with microbial assemblages of various complexities ranging from simple two-component bacterial endosymbiotic associations to multispecies enrichments containing magnetotactic bacteria to highly complex marine and soil communities. Phylogenetic analysis of the retrieved rRNA sequence of an uncultured microorganism reveals its closest culturable relatives and may, together with information on the physicochemical conditions of its natural habitat, facilitate more directed cultivation attempts. For the analysis of complex communities such as multispecies biofilms and activated-sludge flocs, a different approach has proven advantageous. Sets of probes specific to different taxonomic levels are applied consecutively beginning with the more general and ending with the more specific (a hierarchical top-to-bottom approach), thereby generating increasingly precise information on the structure of the community. Not only do rRNA-targeted whole-cell hybridizations yield data on cell morphology, specific cell counts, and in situ distributions of defined phylogenetic groups, but also the strength of the hybridization signal reflects the cellular rRNA content of individual cells. From the signal strength conferred by a specific probe, in situ growth rates and activities of individual cells might be estimated for known species. In many ecosystems, low cellular rRNA content and/or limited cell permeability, combined with background fluorescence, hinders in situ identification of autochthonous populations. Approaches to circumvent these problems are discussed in detail.

Formats available

You can view the full content in the following formats:

Information & Contributors

Information

Published In

cover image Microbiological Reviews
Microbiological Reviews
Volume 59Number 1March 1995
Pages: 143 - 169
PubMed: 7535888

History

Published online: 1 March 1995

Permissions

Request permissions for this article.

Contributors

Authors

R I Amann
Lehrstuhl für Mikrobiologie, Technische Universität München, Germany.
W Ludwig
Lehrstuhl für Mikrobiologie, Technische Universität München, Germany.
K H Schleifer
Lehrstuhl für Mikrobiologie, Technische Universität München, Germany.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy