Eukaryotic Cells
Review
15 December 2023

Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes

SUMMARY

Acidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES

1.
Babes V. 1895. Beobachtungen über die metachromatischen köperchen, sporenbildung, verzweigung, kolben- und kapsel-bildung pathogener bakterien. Zentrlbl Bakteriol Parasitenkd Infektioskr Hyg 20:412–420.
2.
Dell’Angelica EC. 2009. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 21:552–559.
3.
Docampo R, Scott DA, Vercesi AE, Moreno SNJ. 1995. Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310 (Pt 3):1005–1012.
4.
Vercesi AE, Moreno SN, Docampo R. 1994. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei. Biochem J 304 (Pt 1):227–233.
5.
Scott DA, Docampo R, Dvorak JA, Shi S, Leapman RD. 1997. In situ compositional analysis of acidocalcisomes in Trypanosoma cruzi. J Biol Chem 272:28020–28029.
6.
LeFurgey A, Ingram P, Blum JJ. 1990. Elemental composition of polyphosphate-containing vacuoles and cytoplasm of Leishmania major. Mol Biochem Parasitol 40:77–86.
7.
Dvorak JA, Engel JC, Leapman RD, Swyt CR, Pella PA. 1988. Trypanosoma cruzi: elemental composition heterogeneity of cloned stocks. Mol Biochem Parasitol 31:19–26.
8.
Vickerman K, Tetley L. 1977. Recent ultrastructural studies on trypanosomes. Ann Soc Belg Med Trop 57:441–457.
9.
Scott DA, de Souza W, Benchimol M, Zhong L, Lu HG, Moreno SN, Docampo R. 1998. Presence of a plant-like proton-pumping pyrophosphatase in acidocalcisomes of Trypanosoma cruzi. J Biol Chem 273:22151–22158.
10.
Scott DA, Docampo R. 2000. Characterization of isolated acidocalcisomes of Trypanosoma cruzi. J Biol Chem 275:24215–24221.
11.
Moreno B, Urbina JA, Oldfield E, Bailey BN, Rodrigues CO, Docampo R. 2000. 31P NMR spectroscopy of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Evidence for high levels of condensed inorganic phosphates. J Biol Chem 275:28356–28362.
12.
Moreno Benjamin, Rodrigues CO, Bailey BN, Urbina JA, Moreno SNJ, Docampo R, Oldfield E. 2002. Magic-angle spinning 31P NMR spectroscopy of condensed phosphates in parasitic protozoa: visualizing the invisible. FEBS Lett 523:207–212.
13.
Ruiz FA, Rodrigues CO, Docampo R. 2001. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi. J Biol Chem 276:26114–26121.
14.
Rodrigues CO, Scott DA, Docampo R. 1999. Characterization of a vacuolar pyrophosphatase in Trypanosoma brucei and its localization to acidocalcisomes. Mol Cell Biol 19:7712–7723.
15.
Rodrigues CO, Ruiz FA, Vieira M, Hill JE, Docampo R. 2002. An acidocalcisomal exopolyphosphatase from Leishmania major with high affinity for short chain polyphosphate. J Biol Chem 277:50899–50906.
16.
Miranda K, Rodrigues CO, Hentchel J, Vercesi A, Plattner H, de Souza W, Docampo R. 2004. Acidocalcisomes of Phytomonas francai possess distinct morphological characteristics and contain iron. Microsc Microanal 10:647–655.
17.
Marchesini N, Ruiz FA, Vieira M, Docampo R. 2002. Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J Biol Chem 277:8146–8153.
18.
Ruiz FA, Marchesini N, Seufferheld M, Docampo R. 2001. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J Biol Chem 276:46196–46203.
19.
Moreno SN, Zhong L. 1996. Acidocalcisomes in Toxoplasma gondii tachyzoites. Biochem J 313 (Pt 2):655–659.
20.
Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R. 2000. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347 Pt 1:243–253.
21.
Soares Medeiros LC, Gomes F, Maciel LRM, Seabra SH, Docampo R, Moreno S, Plattner H, Hentschel J, Kawazoe U, Barrabin H, de Souza W, Damatta RA, Miranda K. 2011. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes. J Eukaryot Microbiol 58:416–423.
22.
Ramos IB, Miranda K, Pace DA, Verbist KC, Lin F-Y, Zhang Y, Oldfield E, Machado EA, De Souza W, Docampo R. 2010. Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP. Biochem J 429:485–495.
23.
Motta LS, Ramos IB, Gomes FM, de Souza W, Champagne DE, Santiago MF, Docampo R, Miranda K, Machado EA. 2009. Proton-pyrophosphatase and polyphosphate in acidocalcisome-like vesicles from oocytes and eggs of Periplaneta americana. Insect Biochem Mol Biol 39:198–206.
24.
Ruiz FA, Lea CR, Oldfield E, Docampo R. 2004. Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279:44250–44257.
25.
Moreno-Sanchez D, Hernandez-Ruiz L, Ruiz FA, Docampo R. 2012. Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem 287:28435–28444.
26.
Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, Moreno SNJ, Orlando R, Docampo R. 2014. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog 10:e1004555.
27.
Patel S, Docampo R. 2010. Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 20:277–286.
28.
Docampo R, Huang G. 2022. New insights into the role of acidocalcisomes in trypanosomatids. J Eukaryotic Microbiology 69.
29.
Meyer A. 1904. Orientierende untersuchungen über verbreitung. morphologie, und chemie des volutin. Bot Zeit 62:113–152.
30.
Wiame JM. 1947. Étude d'une substance polyphosphorée, basophile et métachromatique chez les levures. Biochimica et Biophysica Acta 1:234–255.
31.
Allan RA, Miller JJ. 1980. Influence of S-adenosylmethionine on DAPI-induced fluorescence of polyphosphate in the yeast vacuole. Can J Microbiol 26:912–920.
32.
Swellengrebel NH. 1908. La volutine chez les trypanosomes. C R Soc Biol Paris 64:38–43.
33.
Remonsellez F, Orell A, Jerez CA. 2006. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology (Reading) 152:59–66.
34.
Toso DB, Henstra AM, Gunsalus RP, Zhou ZH. 2011. Structural, mass and elemental analyses of storage granules in methanogenic archaeal cells. Environ Microbiol 13:2587–2599.
35.
Friedberg I, Avigad G. 1968. Structures containing polyphosphate in Micrococcus lysodeikticus. J Bacteriol 96:544–553.
36.
Racki LR, Tocheva EI, Dieterle MG, Sullivan MC, Jensen GJ, Newman DK. 2017. Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 114:E2440–E2449.
37.
Gomes E, Shorter J. 2019. The molecular language of membraneless organelles. J Biol Chem 294:7115–7127.
38.
Wang X, Shi C, Mo J, Xu Y, Wei W, Zhao J. 2020. An inorganic biopolymer polyphosphate controls positively charged protein phase transitions. Angew Chem Int Ed 59:2679–2683.
39.
Seufferheld M, Vieira MCF, Ruiz FA, Rodrigues CO, Moreno SNJ, Docampo R. 2003. Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978.
40.
Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R. 2004. The H+-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 279:51193–51202.
41.
Goodenough U, Heiss AA, Roth R, Rusch J, Lee JH. 2019. Acidocalcisomes: ultrastructure, biogenesis, and distribution in microbial Eukaryotes. Protist 170:287–313.
42.
Frank C, Jendrossek D, Stabb EV. 2020. Acidocalcisomes and polyphosphate granules are different subcellular structures in Agrobacterium tumefaciens. Appl Environ Microbiol 86.
43.
Aschar-Sobbi R, Abramov AY, Diao C, Kargacin ME, Kargacin GJ, French RJ, Pavlov E. 2008. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J Fluoresc 18:859–866.
44.
Diaz JM, Ingall ED. 2010. Fluorometric quantification of natural inorganic polyphosphate. Environ Sci Technol 44:4665–4671.
45.
Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN. 2012. Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek 101:347–357.
46.
Lu HG, Zhong L, Chang KP, Docampo R. 1997. Intracellular Ca2+ pool content and signaling and expression of a calcium pump are linked to virulence in Leishmania mexicana amazonesis amastigotes. J Biol Chem 272:9464–9473.
47.
Rodrigues CO, Scott DA, Docampo R. 1999. Presence of a vacuolar H+-pyrophosphatase in promastigotes of Leishmania donovani and its localization to a different compartment from the vacuolar H+-ATPase. Biochem J 340 (Pt 3):759–766.
48.
Mendoza M, Mijares A, Rojas H, Rodríguez JP, Urbina JA, DiPolo R. 2002. Physiological and morphological evidences for the presence acidocalcisomes in Trypanosoma evansi: single cell fluorescence and 31P NMR studies. Mol Biochem Parasitol 125:23–33.
49.
Miranda K, Docampo R, Grillo O, de Souza W. 2004. Acidocalcisomes of trypanosomatids have species-specific elemental composition. Protist 155:395–405.
50.
Rodrigues CO, Scott DA, Bailey BN, De Souza W, Benchimol M, Moreno B, Urbina JA, Oldfield E, Moreno SN. 2000. Vacuolar proton pyrophosphatase activity and pyrophosphate (PPi) in Toxoplasma gondii as possible chemotherapeutic targets. Biochem J 349 Pt 3:737–745.
51.
Luo S, Vieira M, Graves J, Zhong L, Moreno SN. 2001. A plasma membrane-type Ca2+-ATPase co-localizes with a vacuolar H+-pyrophosphatase to acidocalcisomes of Toxoplasma gondii. EMBO J 20:55–64.
52.
Luo S, Ruiz FA, Moreno SNJ. 2005. The acidocalcisome Ca2+-ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol Microbiol 55:1034–1045.
53.
Rodrigues CO, Ruiz FA, Rohloff P, Scott DA, Moreno SNJ. 2002. Characterization of isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolyzable polyphosphate. J Biol Chem 277:48650–48656.
54.
Rohloff P, Miranda K, Rodrigues JCF, Fang J, Galizzi M, Plattner H, Hentschel J, Moreno SNJ, Langsley G. 2011. Calcium uptake and proton transport by acidocalcisomes of Toxoplasma gondii. PLoS ONE 6:e18390.
55.
Ruiz FA, Luo S, Moreno SNJ, Docampo R. 2004. Polyphosphate content and fine structure of acidocalcisomes of Plasmodium falciparum. Microsc Microanal 10:563–567.
56.
Mallo N, Lamas J, de Felipe A-P, Sueiro R-A, Fontenla F, Leiro J-M. 2016. Role of H+-pyrophosphatase activity in the regulation of intracellular pH in a scuticociliate parasite of turbot: physiological effects. Exp Parasitol 169:59–68.
57.
Folgueira I, Lamas J, Sueiro RA, Leiro JM. 2021. Molecular characterization and transcriptional regulation of two types of H+-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 11:8519.
58.
Komine Y, Eggink LL, Park H, Hoober JK. 2000. Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210:897–905.
59.
Robinson DG, Hoppenrath M, Oberbeck K, Luykx P, Ratajczak R. 1998. Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Botanica Acta 111:108–122.
60.
Zhu J, Loubéry S, Broger L, Zhang Y, Lorenzo‐Orts L, Utz‐Pugin A, Fernie AR, Young‐Tae C, Hothorn M. 2020. A genetically validated approach for detecting inorganic polyphosphates in plants. The Plant Journal 102:507–516.
61.
Pick U, Weiss M. 1991. Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. Plant Physiol 97:1234–1240.
62.
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. 2017. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. Protoplasma 254:1323–1340.
63.
Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T. 2009. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J 60:882–893.
64.
Schlatterer C, Buravkov S, Zierold K, Knoll G. 1994. Calcium-sequestering organelles of Dictyostelium discoideum: changes in element content during early development as measured by electron probe X-ray microanalysis. Cell Calcium 16:101–111.
65.
Schlatterer C, Walther P, Müller M, Mendgen K, Zierold K, Knoll G. 2001. Calcium stores in differentiated Dictyostelium discoideum: prespore cells sequester calcium more efficiently than prestalk cells. Cell Calcium 29:171–182.
66.
MacDonald JIS, Weeks G. 1988. Evidence for a membrane-bound pyrophosphatase in Dictyostelium discoideum. FEBS Lett 238:9–12.
67.
León G, Fiori C, Das P, Moreno M, Tovar R, Sánchez-Salas JL, Muñoz ML. 1997. Electron probe analysis and biochemical characterization of electron-dense granules secreted by Entamoeba histolytica. Mol Biochem Parasitol 85:233–242.
68.
Gerasimaitė R, Sharma S, Desfougères Y, Schmidt A, Mayer A. 2014. Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127:5093–5104.
69.
Hovnanyan K, Marutyan S, Marutyan S, Hovnanyan M, Navasardyan L, Trchounian A. 2020. Ultrastructural investigation of acidocalcisomes and ATPase activity in yeast Candida guilliermondii NP-4 as 'complementary' stress-targets. Lett Appl Microbiol 71:413–419.
70.
Milani G, Schereiber AZ, Vercesi AE. 2001. Ca2+ Transport into an intracellular acidic compartment of Candida parapsilosis. FEBS Lett 500:80–84.
71.
Bowman BJ, Draskovic M, Freitag M, Bowman EJ. 2009. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 8:1845–1855.
72.
Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. 2014. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol 204:638–649.
73.
Nguyen CT, Saito K. 2021. Role of cell wall polyphosphates in phosphorus transfer at the arbuscular interface in Mycorrhizas. Front Plant Sci 12:725939.
74.
Ramos IB, Miranda K, Ulrich P, Ingram P, LeFurgey A, Machado EA, de Souza W, Docampo R. 2010. Calcium- and polyphosphate-containing acidocalcisomes in chicken egg yolk. Biol Cell 102:421–434.
75.
Miranda K, Benchimol M, Docampo R, de Souza W. 2000. The fine structure of acidocalcisomes in Trypanosoma cruzi. Parasitol Res 86:373–384.
76.
Miranda K, Docampo R, Grillo O, Franzen A, Attias M, Vercesi A, Plattner H, Hentschel J, de Souza W. 2004. Dynamics of polymorphism of acidocalcisomes in Leishmania parasites. Histochem Cell Biol 121:407–418.
77.
Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. 2017. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci 130:637–647.
78.
Girard-Dias W, Augusto I, V A Fernandes T, G Pascutti P, de Souza W, Miranda K. 2023. A spatially resolved elemental nanodomain organization within acidocalcisomes in Trypanosoma cruzi. Proc Natl Acad Sci U S A 120:e2300942120.
79.
Moreno B, Bailey BN, Luo S, Martin MB, Kuhlenschmidt M, Moreno SN, Docampo R, Oldfield E. 2001. 31P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth. Biochem Biophys Res Commun 284:632–637.
80.
Negreiros RS, Lander N, Huang G, Cordeiro CD, Smith SA, Morrissey JH, Docampo R. 2018. Inorganic polyphosphate interacts with nucleolar and glycosomal proteins in trypanosomatids. Mol Microbiol 110:973–994.
81.
Rohloff P, Rodrigues CO, Docampo R. 2003. Regulatory volume decrease in Trypanosoma cruzi involves amino acid efflux and changes in intracellular calcium. Mol Biochem Parasitol 126:219–230.
82.
Kakinuma Y, Masuda N, Igarashi K. 1992. Proton potential-dependent polyamine transport by vacuolar membrane vesicles of Saccharomyces cerevisiae. Biochim Biophys Acta 1107:126–130.
83.
Tomitori H, Kashiwagi K, Asakawa T, Kakinuma Y, Michael AJ, Igarashi K. 2001. Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353:681–688.
84.
Merchant SS, Schmollinger S, Strenkert D, Moseley JL, Blaby-Haas CE. 2020. From economy to luxury: copper homeostasis in Chlamydomonas and other algae. Biochim Biophys Acta Mol Cell Res 1867:118822.
85.
Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, Strenkert D, Holbrook K, Otegui MS, Khatua K, Das S, Datta A, Chen S, Ramon C, Ralle M, Weber PK, Stemmler TL, Pett-Ridge J, Hoffman BM, Merchant SS. 2019. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem 294:17626–17641.
86.
Long H, Fang J, Ye L, Zhang B, Hui C, Deng X, Merchant SS, Huang K. 2023. Structural and functional regulation of Chlamydomonas lysosome-related organelles during environmental changes. Plant Physiol 192:927–944.
87.
Nguyen TQ, Dziuba N, Lindahl PA. 2019. Isolated Saccharomyces cerevisiae vacuoles contain low-molecular-mass transition-metal polyphosphate complexes. Metallomics 11:1298–1309.
88.
Salto ML, Kuhlenschmidt T, Kuhlenschmidt M, de Lederkremer RM, Docampo R. 2008. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi. Mol Biochem Parasitol 158:120–130.
89.
Billington K, Halliday C, Madden R, Dyer P, Barker AR, Moreira-Leite FF, Carrington M, Vaughan S, Hertz-Fowler C, Dean S, Sunter JD, Wheeler RJ, Gull K. 2023. Genome-wide subcellular protein map for the flagellate parasite Trypanosoma brucei. Nat Microbiol 8:533–547.
90.
Sunter JD, Dean S, Wheeler RJ. 2023. TrypTag.org: from images to discoveries using genome-wide protein localisation in Trypanosoma brucei. Trends in Parasitology 39:328–331.
91.
Fang J, Rohloff P, Miranda K, Docampo R. 2007. Ablation of a small transmembrane protein of Trypanosoma brucei (TbVTC1) involved in the synthesis of polyphosphate alters acidocalcisome biogenesis and function, and leads to a cytokinesis defect. Biochem J 407:161–170.
92.
Lander N, Ulrich PN, Docampo R. 2013. Trypanosoma brucei vacuolar transporter chaperone 4 (TbVtc4) is an acidocalcisome polyphosphate kinase required for in vivo infection. J Biol Chem 288:34205–34216.
93.
Ulrich PN, Lander N, Kurup SP, Reiss L, Brewer J, Soares Medeiros LC, Miranda K, Docampo R. 2014. The acidocalcisome vacuolar transporter chaperone 4 catalyzes the synthesis of polyphosphate in insect-stages of Trypanosoma brucei and T. cruzi. J Eukaryot Microbiol 61:155–165.
94.
Isah MB, Goldring JPD, Coetzer THT. 2020. Expression and copper binding properties of the N-terminal domain of copper P-type ATPases of African trypanosomes. Mol Biochem Parasitol 235:111245.
95.
Paul R, Banerjee S, Sen S, Dubey P, Maji S, Bachhawat AK, Datta R, Gupta A. 2022. A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. J Biol Chem 298:101539.
96.
Luo S, Rohloff P, Cox J, Uyemura SA, Docampo R. 2004. Trypanosoma brucei plasma membrane-type Ca2+-ATPase 1 (TbPMC1) and 2 (TbPMC2) genes encode functional Ca2+-ATPases localized to the acidocalcisomes and plasma membrane, and essential for Ca2+ homeostasis and growth. J Biol Chem 279:14427–14439.
97.
Huang G, Bartlett PJ, Thomas AP, Moreno SNJ, Docampo R. 2013. Acidocalcisomes of Trypanosoma brucei have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proc Natl Acad Sci U S A 110:1887–1892.
98.
Steinmann ME, Schmidt RS, Bütikofer P, Mäser P, Sigel E. 2017. TbIRK is a signature sequence free potassium channel from Trypanosoma brucei locating to acidocalcisomes. Sci Rep 7:656.
99.
Lemercier G, Espiau B, Ruiz FA, Vieira M, Luo S, Baltz T, Docampo R, Bakalara N. 2004. A pyrophosphatase regulating polyphosphate metabolism in acidocalcisomes is essential for Trypanosoma brucei virulence in mice. J Biol Chem 279:3420–3425.
100.
Huang G, Fang J, Sant’Anna C, Li Z-H, Wellems DL, Rohloff P, Docampo R. 2011. Adaptor protein-3 (AP-3) complex mediates the biogenesis of acidocalcisomes and is essential for growth and virulence of Trypanosoma brucei. J Biol Chem 286:36619–36630.
101.
Emmer BT, Nakayasu ES, Souther C, Choi H, Sobreira TJP, Epting CL, Nesvizhskii AI, Almeida IC, Engman DM. 2011. Global analysis of protein palmitoylation in African trypanosomes. Eukaryot Cell 10:455–463.
102.
Sun SY, Wang C, Yuan YA, He CY. 2013. An intracellular membrane junction consisting of flagellum adhesion glycoproteins links flagellum biogenesis to cell morphogenesis in Trypanosoma brucei. J Cell Sci 126:520–531.
103.
Ferella M, Nilsson D, Darban H, Rodrigues C, Bontempi EJ, Docampo R, Andersson B. 2008. Proteomics in Trypanosoma cruzi--localization of novel proteins to various organelles. Proteomics 8:2735–2749.
104.
Lu H-G, Zhong L, de Souza W, Benchimol M, Moreno S, Docampo R. 1998. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18:2309–2323.
105.
Montalvetti A, Rohloff P, Docampo R. 2004. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–38682.
106.
Rohloff P, Montalvetti A, Docampo R. 2004. Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J Biol Chem 279:52270–52281.
107.
Lander N, Chiurillo MA, Storey M, Vercesi AE, Docampo R. 2016. CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 291:25505–25515.
108.
Chiurillo MA, Lander N, Vercesi AE, Docampo R. 2020. Ip3 receptor-mediated Ca2+ release from acidocalcisomes regulates mitochondrial bioenergetics and prevents autophagy in Trypanosoma cruzi. Cell Calcium 92:102284.
109.
Galizzi M, Bustamante JM, Fang J, Miranda K, Soares Medeiros LC, Tarleton RL, Docampo R. 2013. Evidence for the role of vacuolar soluble pyrophosphatase and inorganic polyphosphate in Trypanosoma cruzi persistence. Mol Microbiol 90:699–715.
110.
Batista CM, Saad F, Ceccoti SPC, Eger I, Soares MJ. 2018. Subcellular localisation of FLAG tagged enzymes of the dynamic protein S-palmitoylation cycle of Trypanosoma cruzi epimastigotes. Mem Inst Oswaldo Cruz 113:e180086.
111.
Mantilla BS, Azevedo C, Denny PW, Saiardi A, Docampo R. 2021. The histidine ammonia lyase of Trypanosoma cruzi is involved in acidocalcisome alkalinization and is essential for survival under starvation conditions. mBio 12:e01981-21.
112.
Luo S, Marchesini N, Moreno SN, Docampo R. 1999. A plant-like vacuolar H+-pyrophosphatase in Plasmodium falciparum. FEBS Lett 460:217–220.
113.
Chasen NM, Stasic AJ, Asady B, Coppens I, Moreno SNJ. 2019. The vacuolar zinc transporter TgZnT protects Toxoplasma gondii from zinc toxicity. mSphere 4:e00086-19.
114.
Kenthirapalan S, Waters AP, Matuschewski K, Kooij TWA. 2014. Copper-transporting ATPase is important for malaria parasite fertility. Mol Microbiol 91:315–325.
115.
Liu J, Pace D, Dou Z, King TP, Guidot D, Li Z-H, Carruthers VB, Moreno SNJ. 2014. A vacuolar-H(+) -pyrophosphatase (TgVP1) is required for microneme secretion, host cell invasion, and extracellular survival of Toxoplasma gondii. Mol Microbiol 93:698–712.
116.
Stasic AJ, Chasen NM, Dykes EJ, Vella SA, Asady B, Starai VJ, Moreno SNJ. 2019. The toxoplasma vacuolar H+-ATPase regulates intracellular pH and impacts the maturation of essential secretory proteins. Cell Rep 27:2132–2146.
117.
Benchimol M, De Souza W, Vanderheyden N, Zhong L, Lu HG, Moreno SN, Docampo R. 1998. Functional expression of a vacuolar-type H+-ATPase in the plasma membrane and intracellular vacuoles of Trypanosoma cruzi. Biochem J 332 (Pt 3):695–702.
118.
Stasic AJ, Dykes EJ, Cordeiro CD, Vella SA, Fazli MS, Quinn S, Docampo R, Moreno SNJ. 2021. Ca2+ entry at the plasma membrane and uptake by acidic stores is regulated by the activity of the V-H+ -ATPase in Toxoplasma gondii. Mol Microbiol 115:1054–1068.
119.
Hayashi M, Yamada H, Mitamura T, Horii T, Yamamoto A, Moriyama Y. 2000. Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes. J Biol Chem 275:34353–34358.
120.
Saliba KJ, Allen RJW, Zissis S, Bray PG, Ward SA, Kirk K. 2003. Acidification of the malaria parasite’s digestive vacuole by a H+-ATPase and a H+-pyrophosphatase. J Biol Chem 278:5605–5612.
121.
Elandalloussi LM, Adams B, Smith PJ. 2005. ATPase activity of purified plasma membranes and digestive vacuoles from Plasmodium falciparum. Mol Biochem Parasitol 141:49–56.
122.
Saliba KJ, Kirk K. 1999. pH regulation in the intracellular malaria parasite, Plasmodium falciparum. H+ extrusion via a V-type H+-ATPase. J Biol Chem 274:33213–33219.
123.
Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D. 1992. Vacuolar H+-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci 17:348–353.
124.
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ. 2012. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403.
125.
Martinez R, Wang Y, Benaim G, Benchimol M, de Souza W, Scott DA, Docampo R. 2002. A proton pumping pyrophosphatase in the Golgi apparatus and plasma membrane vesicles of Trypanosoma cruzi. Mol Biochem Parasitol 120:205–213.
126.
Hill JE, Scott DA, Luo S, Docampo R. 2000. Cloning and functional expression of a gene encoding a vacuolar-type proton-translocating pyrophosphatase from Trypanosoma cruzi. Biochem J 351:281–288.
127.
Lemercier G, Dutoya S, Luo S, Ruiz FA, Rodrigues CO, Baltz T, Docampo R, Bakalara N. 2002. A vacuolar-type H+-pyrophosphatase governs maintenance of functional acidocalcisomes and growth of the insect and mammalian forms of Trypanosoma brucei. J Biol Chem 277:37369–37376.
128.
McIntosh MT, Drozdowicz YM, Laroiya K, Rea PA, Vaidya AB. 2001. Two classes of plant-like vacuolar-type H+-pyrophosphatases in malaria parasites. Mol Biochem Parasitol 114:183–195.
129.
Miranda K, Pace DA, Cintron R, Rodrigues JCF, Fang J, Smith A, Rohloff P, Coelho E, de Haas F, de Souza W, Coppens I, Sibley LD, Moreno SNJ. 2010. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 76:1358–1375.
130.
Segami S, Asaoka M, Kinoshita S, Fukuda M, Nakanishi Y, Maeshima M. 2018. Biochemical, structural and physiological characteristics of vacuolar H+-pyrophosphatase. Plant Cell Physiol 59:1300–1308.
131.
Potapenko E, Cordeiro CD, Huang G, Storey M, Wittwer C, Dutta AK, Jessen HJ, Starai VJ, Docampo R. 2018. 5-Diphosphoinositol pentakisphosphate (5-IP7) regulates phosphate release from acidocalcisomes and yeast vacuoles. J Biol Chem 293:19101–19112.
132.
Kornberg A. 1962. On the metabolic significance of phosphorolytic and pyrophosphorolytic reactions, p 251–254. In Kasha M, B Pullman (ed), Horizons in Biochemistry. Academic Press, New York.
133.
Rocha Facanha A, de Meis L. 1998. Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495.
134.
Hirata T, Nakamura N, Omote H, Wada Y, Futai M. 2000. Regulation and reversibility of vacuolar H+-ATPase. J Biol Chem 275:386–389.
135.
Moniakis J, Coukell MB, Forer A. 1995. Molecular cloning of an intracellular P-type ATPase from Dictyostelium that is up-regulated in calcium-adapted cells. J Biol Chem 270:28276–28281.
136.
Cunningham KW, Fink GR. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J Cell Biol 124:351–363.
137.
Ghosh SK, Rosenthal B, Rogers R, Samuelson J. 2000. Vacuolar localization of an Entamoeba histolytica homologue of the plasma membrane ATPase (PMCA). Mol Biochem Parasitol 108:125–130.
138.
Pérez-Gordones MC, Ramírez-Iglesias JR, Cervino V, Uzcanga GL, Benaim G, Mendoza M. 2017. Evidence of the presence of a calmodulin-sensitive plasma membrane Ca2+-ATPase in Trypanosoma equiperdum. Mol Biochem Parasitol 213:1–11.
139.
Benaim G, Losada S, Gadelha FR, Docampo R. 1991. A calmodulin-activated (Ca2+-Mg2+)-ATPase is involved in Ca2+ transport by plasma membrane vesicles from Trypanosoma cruzi. Biochem J 280 (Pt 3):715–720.
140.
Hasan NM, Lutsenko S. 2012. Regulation of copper transporters in human cells. Curr Top Membr 69:137–161.
141.
Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS. 2014. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10:1034–1042.
142.
Hothorn M, Neumann H, Lenherr ED, Wehner M, Rybin V, Hassa PO, Uttenweiler A, Reinhardt M, Schmidt A, Seiler J, Ladurner AG, Herrmann C, Scheffzek K, Mayer A. 2009. Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324:513–516.
143.
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. 2016. Control of eukaryotic phosphate homeostasis by Inositol polyphosphate sensor domains. Science 352:986–990.
144.
Guan Z, Chen J, Liu R, Chen Y, Xing Q, Du Z, Cheng M, Hu J, Zhang W, Mei W, Wan B, Wang Q, Zhang J, Cheng P, Cai H, Cao J, Zhang D, Yan J, Yin P, Hothorn M, Liu Z. 2023. The cytoplasmic synthesis and coupled membrane translocation of eukaryotic polyphosphate by signal-activated VTC complex. Nat Commun 14:718.
145.
Liu W, Wang J, Comte-Miserez V, Zhang M, Yu X, Chen Q, Jessen HJ, Mayer A, Wu S, Ye S. 2023. Cryo-EM structure of the polyphosphate polymerase VTC reveals coupling of polymer synthesis to membrane transit. EMBO J 42:e113320.
146.
Pipercevic J, Kohl B, Gerasimaite R, Comte-Miserez V, Hostachy S, Müntener T, Agustoni E, Jessen HJ, Fiedler D, Mayer A, Hiller S. 2023. Inositol pyrophosphates activate the vacuolar transport chaperone complex in yeast by disrupting a homotypic SPX domain interaction. Nat Commun 14:2645.
147.
Klompmaker SH, Kohl K, Fasel N, Mayer A. 2017. Magnesium uptake by connecting fluid-phase endocytosis to an intracellular inorganic cation filter. Nat Commun 8:1879.
148.
Kohl K, Zangger H, Rossi M, Isorce N, Lye LF, Owens KL, Beverley SM, Mayer A, Fasel N. 2018. Importance of polyphosphate in the Leishmania life cycle. Microb Cell 5:371–384.
149.
Murray JM, Johnson DI. 2001. The Cdc42p GTPase and its regulators Nrf1p and Scd1p are involved in endocytic trafficking in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:3004–3009.
150.
Johnson DI. 1999. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev 63:54–105.
151.
Richman TJ, Sawyer MM, Johnson DI. 2002. Saccharomyces cerevisiae Cdc42p localizes to cellular membranes and clusters at sites of polarized growth. Eukaryot Cell 1:458–468.
152.
Müller O, Johnson DI, Mayer A. 2001. Cdc42p functions at the docking stage of yeast vacuole membrane fusion. EMBO J 20:5657–5665.
153.
Rooney PJ, Ayong L, Tobin CM, Moreno SNJ, Knoll LJ. 2011. TgVTC2 is involved in polyphosphate accumulation in Toxoplasma gondii. Mol Biochem Parasitol 176:121–126.
154.
Aksoy M, Pootakham W, Grossman AR. 2014. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation. Plant Cell 26:4214–4229.
155.
Wang L, Jia X, Zhang Y, Xu L, Menand B, Zhao H, Zeng H, Dolan L, Zhu Y, Yi K. 2021. Loss of two families of SPX domain-containing proteins required for vacuolar polyphosphate accumulation coincides with the transition to phosphate storage in green plants. Mol Plant 14:838–846.
156.
Plouviez M, Fernández E, Grossman AR, Sanz-Luque E, Sells M, Wheeler D, Guieysse B. 2021. Responses of Chlamydomonas reinhardtii during the transition from P-deficient to P-sufficient growth (the P-overplus response): the roles of the vacuolar transport chaperones and polyphosphate synthesis. J Phycol 57:988–1003.
157.
Kumble KD, Kornberg A. 1996. Endopolyphosphatases for long chain inorganic polyphosphate in yeast and mammals. J Biol Chem 271:27146–27151.
158.
Shi X, Kornberg A. 2005. Endopolyphosphatase in Saccharomyces cerevisiae undergoes post-translational activations to produce short-chain polyphosphates. FEBS Lett 579:2014–2018.
159.
Sethuraman A, Rao NN, Kornberg A. 2001. The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:8542–8547.
160.
Andreeva N, Trilisenko L, Eldarov M, Kulakovskaya T. 2015. Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities. PLoS One 10:e0119594.
161.
Gerasimaitė R, Mayer A. 2017. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci 130:1625–1636.
162.
Espiau B, Lemercier G, Ambit A, Bringaud F, Merlin G, Baltz T, Bakalara N. 2006. A soluble pyrophosphatase, a key enzyme for polyphosphate metabolism in Leishmania. J Biol Chem 281:1516–1523.
163.
Kotsikorou E, Song Y, Chan JMW, Faelens S, Tovian Z, Broderick E, Bakalara N, Docampo R, Oldfield E. 2005. Bisphosphonate inhibition of the exopolyphosphatase activity of the Trypanosoma brucei soluble vacuolar pyrophosphatase. J Med Chem 48:6128–6139.
164.
Yang Y, Ko T-P, Chen C-C, Huang G, Zheng Y, Liu W, Wang I, Ho M-R, Hsu S-TD, O’Dowd B, Huff HC, Huang C-H, Docampo R, Oldfield E, Guo R-T. 2016. Structures of trypanosome vacuolar soluble pyrophosphatases: antiparasitic drug targets. ACS Chem Biol 11:1362–1371.
165.
Jamwal A, Round AR, Bannwarth L, Venien-Bryan C, Belrhali H, Yogavel M, Sharma A. 2015. Structural and functional highlights of vacuolar soluble protein 1 from pathogen Trypanosoma brucei brucei. J Biol Chem 290:30498–30513.
166.
Li Z-H, Alvarez VE, De Gaudenzi JG, Sant’Anna C, Frasch ACC, Cazzulo JJ, Docampo R. 2011. Hyperosmotic stress induces aquaporin-dependent cell shrinkage, polyphosphate synthesis, amino acid accumulation, and global gene expression changes in Trypanosoma cruzi. J Biol Chem 286:43959–43971.
167.
Niyogi S, Jimenez V, Girard-Dias W, de Souza W, Miranda K, Docampo R. 2015. Rab32 is essential for maintaining functional acidocalcisomes, and for growth and infectivity of Trypanosoma cruzi. J Cell Sci 128:2363–2373.
168.
Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SNJ, Orlando R, Docampo R, Langsley G. 2011. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS ONE 6:e18013.
169.
Prole DL, Taylor CW. 2011. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One 6:e26218.
170.
Li F-J, Tan KSW, He CY. 2017. BAPTA-AM decreases cellular pH, inhibits acidocalcisome acidification and autophagy in amino acid-starved T. brucei. Mol Biochem Parasitol 213:26–29.
171.
Hashimoto M, Enomoto M, Morales J, Kurebayashi N, Sakurai T, Hashimoto T, Nara T, Mikoshiba K. 2013. Inositol 1,4,5-trisphosphate receptor regulates replication, differentiation, infectivity and virulence of the parasitic protist Trypanosoma cruzi. Mol Microbiol 87:1133–1150.
172.
Potapenko E, Negrão NW, Huang G, Docampo R. 2019. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 294:10628–10637.
173.
Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y. 2001. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca2+-permeable channel in the yeast vacuolar membrane. Proc Natl Acad Sci U S A 98:7801–7805.
174.
Denis V, Cyert MS. 2002. Internal Ca2+ release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue. J Cell Biol 156:29–34.
175.
Ahmed T, Nisler CR, Fluck EC, Walujkar S, Sotomayor M, Moiseenkova-Bell VY. 2022. Structure of the ancient TRPY1 channel from Saccharomyces cerevisiae reveals mechanisms of modulation by lipids and calcium. Structure 30:139–155.
176.
Nies DH, Silver S. 1995. Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199.
177.
Kawachi M, Kobae Y, Kogawa S, Mimura T, Krämer U, Maeshima M. 2012. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1. FEBS J 279:2339–2356.
178.
Maret W. 2017. Zinc in cellular regulation: the nature and significance of "zinc signals. Int J Mol Sci 18:2285.
179.
Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298.
180.
Li L, Chen OS, McVey Ward D, Kaplan J. 2001. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem 276:29515–29519.
181.
Slavic K, Krishna S, Lahree A, Bouyer G, Hanson KK, Vera I, Pittman JK, Staines HM, Mota MM. 2016. A vacuolar iron-transporter homologue acts as a detoxifier in Plasmodium. Nat Commun 7:10403.
182.
Hürlimann HC, Stadler-Waibel M, Werner TP, Freimoser FM, Subramani S. 2007. Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae. Mol Biol Cell 18:4438–4445.
183.
Jimenez V, Docampo R. 2015. TcPho91 is a contractile vacuole phosphate sodium symporter that regulates phosphate and polyphosphate metabolism in Trypanosoma cruzi. Mol Microbiol 97:911–925.
184.
Vercesi AE, Docampo R. 1996. Sodium-proton exchange stimulates Ca2+ release from acidocalcisomes of Trypanosoma brucei. Biochem J 315 (Pt 1):265–270.
185.
Vercesi EA, Grijalba TM, Docampo R. 1997. Inhibition of Ca2+ Release from Trypanosoma brucei acidocalcisomes by 3,5-dibutyl-4-hydroxytoluene: role of the Na+/H+ exchanger. Biochem J 328:479–482.
186.
Vercesi AE, Rodrigues CO, Catisti R, Docampo R. 2000. Presence of a Na+/H+ exchanger in acidocalcisomes of Leishmania donovani and their alkalization by anti-leishmanial drugs. FEBS Lett 473:203–206.
187.
Cutler DF. 2002. Introduction: lysosome-related organelles. Semin Cell Dev Biol 13:261–262.
188.
Dell’Angelica EC, Mullins C, Caplan S, Bonifacino JS. 2000. Lysosome-related organelles. FASEB J 14:1265–1278.
189.
Besteiro S, Tonn D, Tetley L, Coombs GH, Mottram JC. 2008. The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J Cell Sci 121:561–570.
190.
Boehm M, Bonifacino JS. 2002. Genetic analyses of adaptin function from yeast to mammals. Gene 286:175–186.
191.
Ihrke G, Kyttälä A, Russell MRG, Rous BA, Luzio JP. 2004. Differential use of two AP-3-mediated pathways by lysosomal membrane proteins. Traffic 5:946–962.
192.
Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J. 2004. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 164:1065–1076.
193.
Bonifacino JS, Traub LM. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447.
194.
Huizing M, Malicdan MCV, Wang JA, Pri-Chen H, Hess RA, Fischer R, O’Brien KJ, Merideth MA, Gahl WA, Gochuico BR. 2020. Hermansky-Pudlak syndrome: mutation update. Hum Mutat 41:543–580.
195.
Bentley-DeSousa A, Downey M. 2021. Vtc5 is localized to the vacuole membrane by the conserved AP-3 complex to regulate polyphosphate synthesis in budding yeast. mBio 12:e00994-21.
196.
Kantheti P, Qiao X, Diaz ME, Peden AA, Meyer GE, Carskadon SL, Kapfhamer D, Sufalko D, Robinson MS, Noebels JL, Burmeister M. 1998. Mutation in AP-3 Delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21:111–122.
197.
Raposo G, Marks MS, Cutler DF. 2007. Lysosome-related organelles: driving post-Golgi compartments into specialisation. Curr Opin Cell Biol 19:394–401.
198.
Zhang K, Hsu FF, Scott DA, Docampo R, Turk J, Beverley SM. 2005. Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 55:1566–1578.
199.
Madeira da Silva L, Beverley SM. 2010. Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity. Proc Natl Acad Sci U S A 107:11965–11970.
200.
de Jesus TCL, Tonelli RR, Nardelli SC, da Silva Augusto L, Motta MCM, Girard-Dias W, Miranda K, Ulrich P, Jimenez V, Barquilla A, Navarro M, Docampo R, Schenkman S. 2010. Target of rapamycin (TOR)-like 1 kinase is involved in the control of polyphosphate levels and acidocalcisome maintenance in Trypanosoma brucei. J Biol Chem 285:24131–24140.
201.
Dutoya S, Gibert S, Lemercier G, Santarelli X, Baltz D, Baltz T, Bakalara N. 2001. A novel C-terminal Kinesin is essential for maintaining functional acidocalcisomes in Trypanosoma brucei. J Biol Chem 276:49117–49124.
202.
Ramakrishnan S, Asady B, Docampo R. 2018. Acidocalcisome-mitochondrion membrane contact sites in Trypanosoma brucei. Pathogens 7:33.
203.
Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung K-H, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK. 2010. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142:270–283.
204.
Cunningham KW, Fink GR. 1996. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induces Ca2+ ATPases in Saccharomyces cerevisiae. Mol Cell Biol 16:2226–2237.
205.
Lander N, Chiurillo MA, Docampo R. 2021. Signaling pathways involved in environmental sensing in Trypanosoma cruzi. Mol Microbiol 115:819–828.
206.
Moreno SN, Silva J, Vercesi AE, Docampo R. 1994. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med 180:1535–1540.
207.
Neira I, Ferreira AT, Yoshida N. 2002. Activation of distinct signal transduction pathways in Trypanosoma cruzi isolates with differential capacity to invade host cells. Int J Parasitol 32:405–414.
208.
Schenkman S, Robbins ES, Nussenzweig V. 1991. Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infect Immun 59:645–654.
209.
Kollien AH, Schaub GA. 2000. The development of Trypanosoma cruzi in triatominae. Parasitol Today 16:381–387.
210.
Lang F. 2007. Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623S.
211.
Dave N, Cetiner U, Arroyo D, Fonbuena J, Tiwari M, Barrera P, Lander N, Anishkin A, Sukharev S, Jimenez V. 2021. A novel mechanosensitive channel controls osmoregulation, differentiation, and infectivity in Trypanosoma cruzi. Elife 10.
212.
Chiurillo MA, Carlson J, Bertolini MS, Raja A, Lander N, Weiss LM. 2023. Dual localization of receptor-type adenylate cyclases and cAMP response protein 3 unveils the presence of two putative signaling microdomains in Trypanosoma cruzi. mBio 14:e0106423.
213.
Schoijet AC, Miranda K, Medeiros LCS, de Souza W, Flawiá MM, Torres HN, Pignataro OP, Docampo R, Alonso GD. 2011. Defining the role of a FYVE domain in the localization and activity of a cAMP phosphodiesterase implicated in osmoregulation in Trypanosoma cruzi. Mol Microbiol 79:50–62.
214.
LeFurgey A, Ingram P, Blum JJ. 2001. Compartmental responses to acute osmotic stress in Leishmania major result in rapid loss of Na+ and Cl. Comp Biochem Physiol A Mol Integr Physiol 128:385–394.
215.
Docampo R, Jimenez V, Lander N, Li ZH, Niyogi S. 2013. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. Int Rev Cell Mol Biol 305:69–113.
216.
Suess PM, Gomer RH. 2016. Extracellular polyphosphate inhibits proliferation in an autocrine negative feedback loop in Dictyostelium discoideum. J Biol Chem 291:20260–20269.
217.
Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. 2006. Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 103:903–908.
218.
Smith SA, Choi SH, Davis-Harrison R, Huyck J, Boettcher J, Rienstra CM, Morrissey JH. 2010. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood 116:4353–4359.
219.
Choi SH, Smith SA, Morrissey JH. 2015. Polyphosphate accelerates factor V activation by factor XIa. Thromb Haemost 113:599–604.
220.
Choi SH, Smith SA, Morrissey JH. 2011. Polyphosphate is a cofactor for the activation of factor XI by thrombin. Blood 118:6963–6970.
221.
Müller F, Mutch NJ, Schenk WA, Smith SA, Esterl L, Spronk HM, Schmidbauer S, Gahl WA, Morrissey JH, Renné T. 2009. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139:1143–1156.
222.
Wat JM, Foley JH, Krisinger MJ, Ocariza LM, Lei V, Wasney GA, Lameignere E, Strynadka NC, Smith SA, Morrissey JH, Conway EM. 2014. Polyphosphate suppresses complement via the terminal pathway. Blood 123:768–776.
223.
Smith SA, Morrissey JH. 2008. Polyphosphate enhances fibrin clot structure. Blood 112:2810–2816.
224.
Wilkinson SR, Prathalingam SR, Taylor MC, Ahmed A, Horn D, Kelly JM. 2006. Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic Biol Med 40:198–209.
225.
Ramakrishnan S, Unger LM, Baptista RP, Cruz-Bustos T, Docampo R, Almeida IC. 2021. Deletion of a Golgi protein in Trypanosoma cruzi reveals a critical role for Mn2+ in protein glycosylation needed for host cell invasion and intracellular replication. PLoS Pathog 17:e1009399.
226.
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M. 2022. Essential metals in health and disease. Chem Biol Interact 367:110173.
227.
Zhao FJ, Tang Z, Song JJ, Huang XY, Wang P. 2022. Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Molecular Plant 15:27–44.
228.
Li FJ, He CY. 2014. Acidocalcisome is required for autophagy in Trypanosoma brucei. Autophagy 10:1978–1988.
229.
Docampo R, Moreno SNJ. 2008. The acidocalcisome as a target for chemotherapeutic agents in protozoan parasites. Curr Pharm Des 14:882–888.
230.
Szabo CM, Oldfield E. 2001. An investigation of bisphosphonate inhibition of a vacuolar proton-pumping pyrophosphatase. Biochem Biophys Res Commun 287:468–473.
231.
Gordon-Weeks R, Parmar S, Davies TG, Leigh RA. 1999. Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase. Biochem J 337 (Pt 3):373–377.
232.
Zhen RG, Baykov AA, Bakuleva NP, Rea PA. 1994. Aminomethylenediphosphonate: a potent type-specific inhibitor of both plant and phototrophic bacterial H+-pyrophosphatases. Plant Physiol 104:153–159.
233.
Drozdowicz YM, Shaw M, Nishi M, Striepen B, Liwinski HA, Roos DS, Rea PA. 2003. Isolation and characterization of TgVP1, a type I vacuolar H+-translocating pyrophosphatase from Toxoplasma gondii. the dynamics of its subcellular localization and the cellular effects of a diphosphonate inhibitor. J Biol Chem 278:1075–1085.
234.
Mathis AM, Holman JL, Sturk LM, Ismail MA, Boykin DW, Tidwell RR, Hall JE. 2006. Accumulation and intracellular distribution of antitrypanosomal diamidine compounds DB75 and DB820 in African trypanosomes. Antimicrob Agents Chemother 50:2185–2191.
235.
Morrissey JH, Smith SA. 2015. Polyphosphate as modulator of hemostasis, thrombosis, and inflammation. J Thromb Haemost 13 Suppl 1:S92–7.
236.
Beyersmann D, Haase H. 2001. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals 14:331–341.

Author Bios

Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
Roberto Docampo received an MD in 1972 from the University of Buenos Aires, a PhD in Microbiology in 1977 from the Federal University of Rio de Janeiro (UFRJ), and a PhD in Biological Chemistry in 1979 from the University of Buenos Aires. He then spent four years as a Visiting Scientist at the NIH before joining first, the UFRJ, and then the Rockefeller University, as Visiting Professor. He joined the University of Illinois at Urbana-Champaign in 1990 and in 2005 he moved to the University of Georgia where he remains as Distinguished Research Professor of Cellular Biology and Eminent Scholar. Docampo is best known for his work on the discovery and characterization of acidocalcisomes of different species. His lab was the first to determine the presence and secretion of polyphosphate by human platelets, which led to the discovery of its role in blood clotting. Docampo is Fellow of the American Academy of Microbiology and of the American Association for the Advancement of Science.

Information & Contributors

Information

Published In

cover image Microbiology and Molecular Biology Reviews
Microbiology and Molecular Biology Reviews
Volume 88Number 127 March 2024
eLocator: e00042-23
Editor: Corrella S. Detweiler, University of Colorado Boulder, Boulder, Colorado, USA
PubMed: 38099688

History

Published online: 15 December 2023

Permissions

Request permissions for this article.

Keywords

  1. acidocalcisome
  2. blood clotting
  3. calcium
  4. dense granules
  5. polyphosphate

Contributors

Author

Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
Author Contributions: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing – original draft, and Writing – review and editing.

Editor

Corrella S. Detweiler
Editor
University of Colorado Boulder, Boulder, Colorado, USA

Notes

The author declares no conflict of interest.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Get Access

LOGIN OPTIONS
Non-Member Login
Buy Article
Microbiology and Molecular Biology Reviews Vol.88 • Issue 1 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Microbiology and Molecular Biology Reviews
ASM members can purchase subscriptions to journals.
Join or renew

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Get Access

LOGIN OPTIONS
Non-Member Login
Buy Article
Microbiology and Molecular Biology Reviews Vol.88 • Issue 1 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Microbiology and Molecular Biology Reviews
ASM members can purchase subscriptions to journals.
Join or renew

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy