Avian influenza (AI) is an economically important disease of poultry worldwide. Avian influenza virus (AIV) belongs to the genus
Influenzavirus A under the family
Orthomyxoviridae. The genome of AIV consists of eight segments of single-stranded, negative-sense RNA that codes for 11 proteins (PB2, PB1, PB1-F2, PA, HA, NP, NA, M1, M2, NS1, and NS2/NEP). The genome is surrounded by the viral envelope that has two glycoprotein spikes on its outer surface, hemagglutinin (HA) and neuraminidase (NA). The HA spikes have receptor binding and fusion functions, and NA spikes have receptor-destroying activity. The envelope also contains a third integral membrane protein, M2, which is exposed on the outer surface and functions as an ion channel, essential for uncoating. The AIV surface glycoproteins are antigenically variable and are serologically divided into 16 HA (H1 to H16) and 9 NA (N1 to N9) subtypes, whereas the nonglycosylated surface protein M2 is highly conserved (
9,
43). On the basis of severity of disease in poultry, AIV strains are also classified into low-pathogenic (LP) and highly pathogenic (HP) categories. Historically, highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 have caused severe disease and mortality in poultry. Recent HPAIV subtype H5N1 infections have resulted in the culling or death of more than 500 million poultry in more than 62 countries (
27). Since 1997, HPAIV strains of subtype H5N1 have been found to cause disease in humans. To date, this virus has caused 436 confirmed human infections. Of these infections, 262 (60%) were fatal. Hence, HPAIV has become a major threat to both animals and humans (
45). The World Organisation of Animal Health (OIE) recommends the control of HPAIV at its poultry source to decrease the viral load in susceptible avian species, thereby decreasing the risk of transmission to humans (
31). The traditional method of control of HPAI has been stamping out infected flocks, which is still used in many countries, including the United States. But, due to economic reasons, culling of infected flocks is no longer considered a practical method for the control of AI in either developed or developing countries. Vaccination has been recommended by the OIE to control AI (
31). Several vaccination strategies, including inactivated and live attenuated vaccines, have been evaluated for HPAIV (
28). Inactivated vaccines are not commonly used because of the high cost and the difficulty in “differentiating infected from vaccinated animals” (DIVA). Live attenuated vaccines are not used because of the concern that the vaccine viruses may, through either mutation or genetic reassortment with circulating strains, become virulent (
1). To overcome these difficulties, recombinant DNA technology was used to generate vectored, subunit, or DNA vaccines. Although several of these vaccines have been shown experimentally to protect against AIV, Newcastle disease virus (NDV)-vectored vaccines have shown the most promising results and also have the advantage of being bivalent vaccines against both NDV and AIV (
11,
25,
32,
42). Furthermore, NDV-vectored vaccines have also been evaluated in primates with promising results (
6). Newcastle disease (ND) is an economically important disease in poultry worldwide. The causative agent (NDV) is a nonsegmented, negative-strand RNA virus belonging to the genus
Avulavirus in the family
Paramyxoviridae. NDV strains vary greatly in virulence. Virulent NDV strains cause a severe respiratory and neurologic disease in poultry worldwide. Naturally occurring avirulent NDV strains are routinely used to control ND in many parts of world (
30).
We recently evaluated recombinant NDV (rNDV) expressing the HA protein of an H5N1 HPAIV vaccine (rNDV-HA) in chickens (
25). Chickens immunized with rNDV-HA produced NDV- and HPAIV H5-specific antibodies and were protected against clinical disease after challenge with virulent NDV or HPAIV. Furthermore, shedding of the challenge virus was not observed, indicating complete protection. Our results demonstrated that rNDV-HA is a suitable bivalent vaccine against NDV and AIV (
25). To date, all NDV-vectored vaccine studies in chickens have used HA genes derived from various HPAIV strains (
11,
25,
32,
42). However, in addition to the HA protein, the envelope of AIV contains two other proteins (NA and M2) on its outer surface. Although antibodies to NA are thought not to play any role in viral attachment and penetration of the host cell, they prevent the release of virus from infected cells (
20) and increase overall resistance to AIV infection in humans (
37). The NA gene is thought to evolve at a lower rate than the HA gene, indicating that NA-specific antibodies may increase the breadth of protection of the HA-specific antibodies (
19). The other surface protein, M2, functions as an ion channel protein and also as a target for anti-HPAIV drugs. The role of M2 protein in the induction of HPAIV-neutralizing antibodies and protective immunity is not well understood. Antibodies induced by the M2e peptide corresponding to the N-terminal 24-amino-acid ectodomain (the portion present on the virus surface) displayed broad protection against influenza A viruses of both homologous (H1N1) and heterologous (H3N1) strains
in vitro and
in vivo (
7). However, the role of entire length of the M2 protein of AIV in induction of neutralizing antibodies and protective immunity against highly pathogenic H5N1 influenza virus in chickens has not been directly evaluated. The M2 protein is conserved among all influenza A viruses and is therefore considered an attractive target for a “universal” vaccine (
8). Antibodies to HA protein alone can protect against lethal AIV challenges; the inclusion of other surface proteins in the vaccine regimen may improve the protective efficacy.
In the present study, we examined the relative contribution of each of the three HPAIV surface proteins (HA, NA, and M2) to induction of neutralizing antibodies and protective immunity in chickens. Recombinant NDV vectors were constructed that individually expressed each of the three HPAIV surface proteins. They were used to immunize chickens either individually or in different possible combinations. Evaluation of the relative neutralization titers of serum antibody, shedding of challenge virus, and protection against lethal HPAIV challenge conferred by each of the NDV-vectored HPAIV surface proteins showed that HA glycoprotein was the major contributor to induction of neutralizing antibodies and protective immunity, followed by NA protein, which conferred partial protection. The M2 protein neither induced a detectable level of serum-neutralizing antibodies nor protected chickens from the HPAIV lethal challenge.
MATERIALS AND METHODS
Viruses and cells.
The HPAIV strain A/Vietnam/1203/2004 (H5N1) was obtained from the Centers for Disease Control and Prevention (CDC; Atlanta, GA). The recombinant live attenuated influenza virus (6attWF10:2H5ΔN1) containing the modified HA gene (deleted polybasic cleavage site) and the NA gene of virus strain A/Vietnam/1203/2004 (H5N1) was described previously (
38). The recombinant version of the avirulent NDV strain LaSota was generated previously in our laboratory (
14,
36). The viruses were propagated in 9-day-old, specific-pathogen-free (SPF) embryonated chicken eggs. The MDCK (Madin-Darby canine kidney), HEp-2 (human epidermoid carcinoma), and DF1 (chicken embryo fibroblast) cell lines were obtained from the American Type Culture Collection (ATCC; Manassas, VA). MDCK and HEp-2 cells were grown in Eagle's minimal essential medium (EMEM) containing 10% fetal bovine serum (FBS) and maintained in EMEM with 5% FBS. DF1 cells were grown in Dulbecco's minimal essential medium (DMEM) with 10% FBS and maintained in DMEM with 5% FBS.
Virus titration.
The titers of stock preparations of rNDV were determined by a plaque assay in DF1 cells using a 0.8% methylcellulose overlay and 5% allantoic fluid. The infected cells were incubated at 37°C for 3 to 4 days until the development of plaques was apparent. The cell monolayers were then fixed with methanol and stained with crystal violet for the enumeration of plaques. Titration of rNDVs and AIVs following
in vitro or
in vivo growth was performed by limiting dilution in DF1 and MDCK cells, respectively, using the Reed and Muench method as described previously (
13), and the titers were expressed as 50% tissue culture infectious dose (TCID
50) units/ml. For both NDVs and AIVs, HA titers were determined using chicken red blood cells (RBC) (
29). Fifty percent egg infective dose (EID
50) values for rNDVs were determined by infecting five eggs per group for each 10-fold serial dilution. Following 24 h of infection, eggs were harvested for allantoic fluid, and the presence of virus was confirmed by an HA test. For HPAIV challenge viruses, the chicken 50% lethal dose (CLD
50) was determined by infecting three (5-week-old) chickens per group, and the 50% end point was determined by the Reed and Muench method (
13).
Generation of rNDVs containing HPAIV HA, NA, and M2 coding sequences.
The rNDV constructs were based on a full-length cDNA of the antigenomic RNA of NDV strain LaSota (
14,
36) that was modified to contain a unique PmeI restriction enzyme site between the P and M genes (
36). The HA, NA, and M2 open reading frames (ORF) of HPAIV strain A/Vietnam/1203/2004 (H5N1) were custom synthesized. The ORFs were designed to be flanked with PmeI sites on each end and to contain an NDV gene junction, including gene end, intergenic, and gene start signals, on the upstream side. In the case of the M2 ORF, these additional sequences were included in the custom synthesis, and the synthetic gene was digested with PmeI and inserted into the unique PmeI site of the full-length cDNA to yield pNDV-M2. In the case of HA and NA, they were added by PCR amplification. Specifically, the NA ORF was PCR amplified with the sense primer Flank NA-F- (5′-
GTTTAAACTTAGAAAAAAT
ACGGGTAGAATTGGAAGATGAACCCCAACCAGAAGATCATCACCA-3′) and the antisense primer NAorf-Pme I-R-(5′
GTTTAAACCTACTTGTCGATGGTGAAAGGCAGCTCGG-3′) (PmeI sites are italicized, and the NDV gene start and gene end signals are underlined). The PCR product was digested with PmeI and cloned into the unique PmeI site of the full-length NDV plasmid to yield pNDV-NA. The construction of the full-length NDV backbone bearing the HA gene, pNDV-HA, followed a similar strategy done in earlier work (
25), retaining its original polybasic cleavage site. In each case, the total genome length was maintained as an even multiple of six, which is required for efficient NDV replication (
21). The inserted HPAIV genes of the resulting plasmids, pNDV-HA, pNDV-NA, and pNDV-M2, were sequenced to confirm orientation and the absence of adventitious mutations. Recombinant viruses were recovered by transfecting these full-length plasmids along with NDV support plasmids (pTM1-NP, pTM1-P, and pTM1-L) into HEp-2 cells as previously described (
14,
36). The recovered viruses were named rNDV-HA, rNDV-NA, and rNDV-M2, respectively.
Expression of the HPAIV HA, NA, and M2 proteins in cells infected with rNDVs.
The expression of the HPAIV HA, NA, and M2 proteins by the rNDVs was examined by Western blot analysis. Briefly, DF1 cells were infected with rNDV, rNDV-HA, rNDV-NA, and rNDV-M2 at a multiplicity of infection (MOI) of 0.01 PFU. The cells were harvested at 48 h postinfection, lysed, and analyzed by Western blotting using a polyvalent chicken antiserum generated by infection with H5N1 HPAIV or a rabbit antiserum specific to a C-terminal peptide of the N1 NA protein (Prosci Inc., Poway, CA). To examine the incorporation of AIV surface proteins into NDV particles, Western blot analysis was carried out using partially purified virus from allantoic fluid of rNDV-infected eggs and the same two antisera.
Pathogenicity of rNDVs in embryonated chicken eggs.
The pathogenicity of the rNDVs was determined by the mean embryo death time (MDT) test in 9-day-old embryonated chicken eggs according to a standard protocol (
30). Briefly, 10-fold serial dilutions of fresh infective allantoic fluid ranging from a dilution of 10
−6 to 10
−9 were made with sterile phosphate-buffered saline. A total of 0.1 ml of each dilution was injected into the allantoic cavities of five 9-day-old SPF embryonated chicken eggs (Bee Eggs Company, PA) and incubated at 37°C. Each egg was examined at 12-h intervals for 7 days, and the time of embryo death was recorded. The minimum lethal dose is the highest virus dilution that causes all embryos inoculated with that dilution to die.
Growth characteristics of the rNDVs in DF1 cells.
The multicycle growth kinetics of rNDV, rNDV-HA, rNDV-NA, and rNDV-M2 were determined in DF1 cells and embryonated eggs. DF1 cells in duplicate wells of six-well plates were infected with viruses at an MOI of 0.01 PFU. After 1 h of adsorption, the cells were washed with DMEM and then covered with DMEM containing 5% FBS and 5% allantoic fluid. The cell culture supernatant samples were collected and replaced with an equal volume of fresh medium at 8-h intervals until 56 h postinfection. The titers of virus in the samples were quantified by TCID50 assay in DF1 cells. Whereas the growth kinetics of rNDVs in embryonated chicken eggs was performed by inoculating 100 PFU of each virus, the allantoic fluid was harvested from three eggs each at 12-h intervals until 60 h. The virus titer from each egg was determined by a TCID50 assay in DF1 cells.
Immunization and challenge experiments in chickens.
The immunization and challenge experiments were performed in two phases. In first phase of the experiment, 4 groups (n = 13 per group) of 2-week-old SPF chickens were immunized by the oculonasal route with a dose of 106 EID50 of rNDV (empty vector), rNDV-HA, and rNDV-NA and a mixture of 106 EID50 each of rNDV-HA and rNDV-NA (rNDV-HA+NA). In the second phase of the experiment, 4 groups (n = 13 per group) of 2-week-old SPF chickens were immunized through the same route with a dose of 106 EID50 of rNDV-M2, a mixture of 106 EID50 each of rNDV-HA and rNDV-M2 (rNDV-HA+M2), a mixture of 106 EID50 each of rNDV-NA and rNDV-M2 (rNDV-NA+M2), and a mixture of 106 EID50 each of rNDV-HA, rNDV-NA, and rNDV-M2 (rNDV-HA+NA+M2). The chickens were immunized with a single dose of rNDVs in a total volume of 0.2 ml (0.05 ml in each eye and nostril). Three weeks postimmunization, prechallenge serum samples were collected for serum antibody response, and the animals were challenged through the intranasal route with 100 CLD50 of the homologous HPAIV A/Vietnam/1203/2004 virus. Three chickens from each group were sacrificed on day 3 postchallenge for quantitation of challenge virus replication. Tissue samples were collected from the respiratory tract, including the trachea, nasal turbinates (upper respiratory tract), and lungs (lower respiratory tract), as well as from the lymphoid system (spleen) and nervous system (brain). The tissues were homogenized in cell culture medium (1 g/10 ml) and clarified by centrifugation. The challenge virus titers in organs were determined by limiting dilution. The remaining 10 chickens in each group were observed daily for 10 days for disease symptoms and mortality following challenge. To monitor shedding of the challenge HPAIV, oral and cloacal swabs were collected on day 3 postchallenge from all chickens. The frequency of HPAIV challenge virus shedding was determined by inoculation of swab samples in 9-day-old embryonated chicken eggs as well as in MDCK cell monolayers, and the presence of HPAIV was confirmed by an HA assay using chicken erythrocytes. In addition, virus titers in the swab samples were determined by a limiting dilution assay in MDCK cell monolayers. Postchallenge serum was collected from the surviving birds before they were sacrificed on day 10 postchallenge. All challenge experiments were carried out in an enhanced BSL3 containment facility certified by the USDA and CDC, with the investigators wearing appropriate protective equipment and compliant with all protocols approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Maryland and under Animal Welfare Association (AWA) regulations.
Serological analysis.
The antibody levels of serum samples collected from chickens vaccinated with rNDVs were evaluated by hemagglutination inhibition (HI), neuraminidase inhibition (NAI), and virus neutralization (VN) assays as well as enzyme-linked immunosorbent assay (ELISA) and Western blotting using standard protocols (
13). For the HI assay, twofold serial dilutions of immunized chicken sera (50 μl) were prepared, and each dilution was combined with 4 HA units of rNDV (NDV HI) or A/Vietnam/1203/2004 (HPAIV HI) strains. Following 1 h of incubation, 50 μl of 1% chicken RBC was added and incubated for 30 min at room temperature, and hemagglutination was scored.
For the NAI assay, the 6attWF10:2H5ΔN1 virus was used as the source of AIV N1 subtype NA. The NA activity of 6attWF10:2H5ΔN1 was measured by a modified fluorometric assay (
15). Briefly, serial twofold dilutions of serum samples were prepared in 20-μl volumes of enzyme buffer (33 mM 2-
N-morpholino ethanesulfonic acid [MES], pH 6.5, and 4 mM calcium chloride) in a 96-well plate. To this, 20 μl of influenza A/6attWF10:2H5ΔN1 virus was added as source of NA diluted in enzyme buffer to a constant NA amount (an optical density at 450 nm [OD
450] of 100,000) and incubated for 1 h at room temperature. Ten microliters of 12.5% (vol/vol) dimethyl sulfoxide was added to each well of a fluorometric assay plate (black 96-well plates; Microfluor, Franklin, MA). Ten microliters of each serum and virus mixture was transferred in duplicate (two rows) to the assay plate. For positive and negative controls, 10 μl of diluted virus or enzyme buffer alone was added to each well in separate rows. The reaction was initiated by the addition of 30 μl of substrate mix [1 volume of 330 mM MES, pH 6.4; 3 volumes of 10 mM calcium chloride; and 2 volumes of 0.5 mM 2′-(4-methylumbelliferyl)-α-
d-
N-acetylneuraminic acid (MUN) (Sigma)] per well to give a final concentration of 100 μM MUN in the assay. The reaction mixture was incubated at 37°C for 15 min with shaking, and the reaction was terminated by the addition of 150 μl of termination buffer (0.014 M sodium hydroxide in 83% [vol/vol] ethanol). The extent of the reaction was quantified by fluorometric determination with an excitation wavelength of 360 nm and an emission wavelength of 450 nm using the Victor3 multilabel plate reader (PerkinElmer). Readings from the substrate blanks were subtracted from the virus sample readings, and the means of duplicate readings were calculated.
The virus neutralization test was carried out using immunized chicken sera in MDCK cells grown in 96-well tissue culture plates. Briefly, twofold serial dilutions of 50-μl serum samples (complement inactivated) were carried and incubated for 1 h with 100 TCID50 of HPAIV influenza A/Vietnam/1203/04 in EMEM. Following incubation, cells were infected with virus serum mixture. VN titer was obtained by confirmation of the presence of virus in wells with the highest dilution of serum. Commercial AIV NP ELISA and NDV ELISA kits (Synbiotics Corporation, San Diego, CA) were used to detect antibodies against the NP antigen of AIV and whole-NDV antigens of rNDVs.
Statistical analysis.
Statistically significant differences in serological analysis of different immunized chicken groups were evaluated by one-way analysis of variance (ANOVA). The survival patterns and median survival times were compared using the log-rank test and chi-square statistics. In the log-rank test, survival curves compare the cumulative probability of survival at any specific time and the assumption of proportional deaths per time is the same at all time points. Survival data and one-way ANOVA were analyzed with the use of Prism 5.0 (GraphPad Software Inc., San Diego, CA) with a significance level of P < 0.05.
DISCUSSION
Circulating H5N1 HPAIV has shown increased genetic and antigenic diversity, dissemination in birds, and persistence in reservoir avian hosts. H5N1 HPAIV is also a major concern for public health due to its cross-species transmission from poultry to humans and high virulence in infected humans. Vaccination of poultry against HPAIV can play an important role in inducing immunity for infection, reducing virus shedding, and decreasing transmission to the human population. Due to the limitations of inactivated and live attenuated AIV vaccines, other approaches including nucleic acid, subunit, and vectored vaccines have been tested. Among these strategies, a promising strategy is the use of vaccine strains of NDV as a vector to express the HPAIV HA protein from an added gene (
11,
25,
32,
35,
42). Newcastle disease is an economically important disease of poultry, and naturally occurring avirulent strains of NDV are widely used as live attenuated vaccines in many countries. Therefore, the use of an avirulent strain of NDV as a vector to express protective antigens of HPAIV would provide a bivalent vaccine against these two important poultry pathogens. Like HPAIV, NDV is a respiratory pathogen of chickens and has similar cellular and tissue tropisms, and thus is a highly suitable vaccine vector. Other advantages include a low price per dose, ease of administration, and the ability to distinguish between infected and vaccinated animals by assaying antibody responses to HPAIV proteins not present in the NDV-vectored vaccine (
25).
Our goal is to develop an NDV-vectored vaccine for poultry that will produce broad and robust immunity against HPAIV H5N1 infections. We and others have previously generated NDV-vectored vaccines expressing the HA protein of H5N1 HPAIV (
11,
25,
32,
35,
42). Chickens vaccinated with these vaccines were completely protected against HPAIV challenge. These initial studies focused on the HA protein, since this is considered to be the major protective AIV antigen. However, AIV also encodes two other surface antigens, namely, the NA and M2 proteins. The role of NA or M2 in immunogenicity and protection was not well understood in the context of either natural infection or a vectored vaccine. Therefore, we have used rNDV as a vector to compare the relative contributions of each of the three HPAIV surface proteins (HA, NA, and M2) to immunogenicity and protection in chickens that were immunized and challenged realistically, namely, by the oculonasal route. Furthermore, we evaluated the immunogenicity and protective efficacy of combinations of two or three rNDVs expressing combinations of the HPAIV surface proteins. Since NDV and HPAIV are respiratory pathogens of chickens, with similar cellular and tissue tropisms, an NDV vector is probably the most relevant system to analyze the roles of HPAIV HA, NA, and M2 proteins in immunogenicity and protection.
We prepared rNDVs individually expressing the HPAIV HA, NA, or M2 protein. The recombinant viruses grew efficiently in embryonated eggs and DF1 cells. Western blot analysis showed that each of the three HPAIV proteins was expressed in DF1 cells infected with the different recombinant viruses. Both the HA and NA proteins were found to be incorporated into the envelope of NDV. Similar incorporation into the vector particle had been previously noted for recombinant vesicular stomatitis virus expressing HA or NA of human influenza virus (
22). Importantly, incorporation of the HPAIV surface proteins into NDV particles did not increase the virulence of the vector in a standard test in embryonated eggs, showing that the expression of HPAIV surface proteins by NDV does not pose a biosafety hazard. The fact that nonsegmented negative-strand viruses have negligible rates of genetic exchange, in contrast with attenuated influenza vaccine viruses, provides an additional safety factor.
In this study, intranasal immunization with rNDV-HA induced high levels of HPAIV-specific HI and neutralizing serum antibodies and completely protected chickens against a potent challenge with HPAIV. Antibodies to the influenza virus HA protein block virus attachment, thereby protecting cells from infection (
39), and likely played a major role in the observed protective immunity. Results from the rNDV-HA-immunized animals did not support that there was any detectable challenge HPAIV replication, whether assayed by shedding, direct analysis of necropsied tissue, or postchallenge antibody increases, indicating a very high level of restriction. Furthermore, all animals were protected against illness and death. Thus, consistent with previous studies (
11,
25,
32,
35,
42), the HA protein is a major independent neutralization and protective antigen, and a single immunization with an rNDV-vectored vaccine expressing HA alone induced a strong serum-neutralizing antibody response and complete protection against challenge with HPAIV.
Antibodies to the NA protein can impede its receptor-destroying function, thereby preventing release of progeny virions from infected cells (
39). However, the individual contribution of NA-specific antibodies to immunogenicity and protection against HPAIV remained unclear. DNA vaccines encoding NA protein provided protection against AIV challenge in mice, a nonnatural host (
2,
3). McNulty et al. (
24) showed that vaccination of chickens with influenza virus provided protection against challenge with a virus of the same NA subtype and an unrelated HA subtype. However, in other studies, recombinant NA protein, DNA vaccines encoding the NA protein, or alphavirus-based virus-like particles containing the NA protein provided partial protection to lethal challenge in chickens (
40,
44). In the present study, rNDV expressing the NA protein induced high levels of HPAIV-specific NAI and neutralizing serum antibodies. It is thought that NA-specific antibodies are not typically associated with a classical neutralization of virus. However, the titer of neutralizing antibodies induced by rNDV-NA was only fourfold less than that induced by rNDV-HA. Thus, the HPAIV NA protein is a substantial, independent neutralization antigen. It may be that neutralization by NA-specific antibodies is achieved indirectly: specifically, antibodies bound to NA on the surface of the HPAIV particle might cause steric hindrance of HA-mediated attachment and penetration. Despite the induction of HPAIV-neutralizing antibodies, none of the immunized chickens were spared from the HPAIV challenge, although their survival times were prolonged by 4 to 5 days compared to nonvaccinated controls. Similar results were observed when chickens were immunized with infectious laryngotracheitis virus (ILTV)-vectored NA vaccines: none of the chickens survived the challenge infection, but their survival times were prolonged by 1 to 2 days compared to nonvaccinated controls (
33). In the present study, immunization with rNDV-NA did not prevent replication of HPAIV challenge virus, but the titers were reduced by 4.3 to 9.0 log
10 in respiratory tract tissues and the spleen and 10-fold in the brain. In addition, while oral shedding of the HPAIV challenge virus was only modestly reduced, cloacal shedding was substantially reduced, indicating that spread through the gastrointestinal tract was reduced. These results indicate that NA-specific immunity can reduce HPAIV replication and prolong survival but cannot prevent death in a highly permissive host.
The AIV M2 protein is highly conserved among influenza A virus subtypes and has been suggested to be a candidate antigen for the development of a broadly cross-reactive “universal” influenza A virus vaccine. However, the contribution of the M2 protein to immunogenicity and protection was not clear. Antibodies to the M2 protein prevent release of progeny viral particles from infected cells
in vitro (
39). Passive transfer of monoclonal antibody against M2 conferred partial protection in mice against human influenza virus (
41). The AIV M2 protein was found to be weakly immunogenic and did not induce neutralizing antibodies but reduced virus replication in mice, a nonnatural host (
18). Various vaccine approaches have been evaluated for development of an M2 universal vaccine, including passive transfer of M2-specific antibodies (
23,
41) or immunization with conjugated M2 peptide antigens (
7,
26), complete M2 protein (
16), or the external domain of M2 (
5,
10,
16). Although these studies demonstrated protection against influenza virus challenge in the nonnatural mouse host, the role of M2 protein in immunogenicity and protection in a natural host had not been evaluated. The rNDV-M2 vaccine elicited a good serum antibody response against M2 in all the immunized chickens, especially when administered alone, but the postimmunization sera did not neutralize the homologous virus
in vitro. Following HPAIV challenge, there was no reduction in death and no prolongation of survival. Indeed, the present challenge study showed the death of one immunized chicken before the death of nonimmunized control chickens, indicating possible exacerbation of disease. Exacerbation of disease was observed in M2-immunized pigs following challenge (
12). In the present study, following the HPAIV challenge of rNDV-M2-immunized animals, there was no detectable decrease in oral or cloacal shedding or decrease in HPAIV titers in necropsied tissues, indicating that there was no detectable restriction of challenge HPAIV replication. These results suggest that the HPAIV M2 protein does not play a significant role in inducing neutralizing antibodies and protection in chickens.
In addition, the combined effect of multiple HPAIV surface proteins in immunogenicity and protection was evaluated by simultaneously immunizing chickens with mixtures of equal amounts of various combinations of rNDVs expressing HPAIV surface proteins. Western blot analysis showed that antibodies to each of the AIV proteins were produced in chickens immunized with various virus combinations, and the induction of antibodies to HA and NA was independently monitored by HI and NAI assays. Of the groups with double combinations, chickens immunized with the combination of rNDV-HA and rNDV-NA elicited good antibody responses to both HPAIV proteins and were completely protected against HPAIV challenge. Neither replication nor shedding of the challenge virus was detected, indicating that the rNDV-HA+NA combination was comparable in efficacy to rNDV-HA. However, the DIVA analysis showed that HPAIV challenge of chickens immunized with rNDV-HA+NA induced detectable antibody to the HPAIV NP protein, whereas this was not observed following challenge of animals immunized with rNDV-HA alone. This suggested that some breakthrough HPAIV replication occurred when rNDV-HA was combined with rNDV-NA, indicating that the efficacy of rNDV-HA was reduced in the combination vaccine. This differs from previous studies using recombinant fowlpox virus (rFPV) and ILTV vector systems, in which expression of NA in combination with HA increased immunogenicity in chickens (
33,
34). The discrepancy in results between these studies might reflect differences in the vector systems used to express the HA and NA proteins. Alternatively, perhaps the level of immunity induced by HA was so high that the contribution made by NA was masked. We also observed reduced efficacy, as well as reduced immunogenicity, when rNDV-M2 was mixed with rNDV-HA or rNDV-NA. The inclusion of rNDV-M2 resulted in a substantial reduction in the titer of HI, NAI, and HPAIV-neutralizing antibodies induced by rNDV-HA and/or rNDV-NA. Conversely, the titer of M2-specific antibodies also decreased substantially when administered in mixtures. The inclusion of rNDV-M2 with rNDV-NA did not greatly affect the replication of challenge HPAIV or the prolongation of survival induced by rNDV-NA. However, inclusion of rNDV-M2 with rNDV-HA or rNDV-HA+NA strongly reduced the level of protective efficacy in a proportion of animals, as evidenced by increased challenge HPAIV replication and decreased survival. Furthermore, when three rNDVs were given as a trivalent vaccine, the antibodies to AIV proteins (HA, NA, and M2) were not produced at the same level. Particularly, M2 antibodies were produced at a lower level than HA and NA antibodies. Presumably this is due to either interference or competition among the three rNDVs. It is possible that rNDV-HA or rNDV-NA interfered with the replication of rNDV-M2. Alternatively, there was a competition in growth among the three rNDVs. The rNDV-HA and rNDV-NA outcompeted rNDV-M2 in growth, leading to lower antibody production against M2 protein. It is also possible that the known cytotoxicity of M2 protein (
4,
17) affected the replication and immune response of rNDV-HA and rNDV-NA. This is suggested by the observation that the NDV-specific immune response to the vector also was lower for rNDV-M2 and all combinations in which it was involved. In summary, combinations of vectors in which rNDV-HA was present retained substantial immunogenicity and protective efficacy, consistent with the status of HA as the major neutralization and protective antigen, but the inclusion of rNDV expressing the other proteins did not provide an increase in neutralizing antibodies or protective immunity. In this study, the role of cell-mediated immunity in protection has not been evaluated. It will be interesting to perform passive antibody experiments transferring serum antibody from one chicken to another to understand the role of antibodies versus cellular immune responses generated using these rNDV vectors expressing AIV antigens.
One of the major concerns of currently available HPAIV vaccines is that they do not induce sufficient immunity to completely prevent HPAIV infections and subsequent virus shedding. Although animals may be protected from severe disease and death, they can transmit HPAIV to unvaccinated flocks and to humans. Therefore, an ideal HPAIV vaccine should completely prevent any challenge virus replication. Our study showed that rNDV-HA alone fully protected chickens and completely prevented detectable HPAIV replication and shedding. Hence, these birds would not pose a threat of transmission. In summary, the findings of this study showed that the HA protein is clearly the major neutralization and protective antigen of HPAIV and the protein of choice for inclusion in a vectored HPAIV vaccine. The NA protein induced substantial titers of neutralizing antibodies to HPAIV, but the immunity was not sufficient to protect against HPAIV challenge, although it prolonged survival. The M2 protein neither induced neutralizing antibodies nor provided protection against HPAIV challenge. These findings indicate that an NDV-vectored vaccine expressing HA was superior to a combination vaccine consisting of rNDVs expressing the HA, NA, and M2 proteins. Whether additional HPAIV proteins would provide increased protection, such as that mediated by cellular immunity, remains to be investigated.