1 December 1996

Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae

Abstract

The nifLA operon of Klebsiella pneumoniae codes for the two antagonistic regulatory proteins which control expression of all other nitrogen fixation genes. NifA is a transcriptional activator, and NifL inhibits NifA. The importance of a correct NifL-NifA stoichiometry for efficient regulation of nitrogen fixation genes has been investigated by constructing a strain with an altered nifL-nifA gene dosage ratio, resulting from the integration of an extra copy of nifA. Results showed that a balanced synthesis of both gene products is essential for correct regulation. Effects of mutations provoking translation termination of nifL upstream or downstream of its natural stop codon, combined with overproduction of both proteins when the genes are transcribed and translated from signals of the phi10 gene of the phage T7, showed that, in addition to the previously reported transcriptional polarity, there is translational coupling between nifL and nifA. In spite of the apparently efficient ribosome binding site of nifA, its rate of independent translation is very low. This is due to a secondary structure masking the Shine-Dalgarno sequence of nifA, which could be melted by ribosomes translating nifL. Mutational analysis confirmed the functional significance of the secondary structure in preventing independent translation of nifA. Translational coupling between the two cistrons is proposed as an efficient mechanism to prevent production of an excess of NifA, which would affect the normal regulation of nitrogen fixation genes.

Formats available

You can view the full content in the following formats:

Information & Contributors

Information

Published In

cover image Journal of Bacteriology
Journal of Bacteriology
Volume 178Number 23December 1996
Pages: 6817 - 6823
PubMed: 8955302

History

Published online: 1 December 1996

Permissions

Request permissions for this article.

Contributors

Authors

F Govantes
Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
J A Molina-López
Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.
E Santero
Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Spain.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy