Research Article
1 February 1993

Insertion derivatives containing segments of up to 16 amino acids identify surface- and periplasm-exposed regions of the FhuA outer membrane receptor of Escherichia coli K-12

Abstract

The FhuA receptor in the outer membrane of Escherichia coli K-12 is involved in the uptake of ferrichrome, colicin M, and the antibiotic albomycin and in infection by phages T1, T5, and phi 80. Fragments of up to 16 amino acid residues were inserted into FhuA and used to determine FhuA active sites and FhuA topology in the outer membrane. For this purpose antibiotic resistance boxes flanked by symmetric polylinkers were inserted into fhuA and subsequently partially deleted. Additional in-frame insertions were generated by mutagenesis with transposon Tn1725. The 68 FhuA protein derivatives examined contained segments of 4, 8, 12, 16, and 22 additional amino acid residues at 34 different locations from residues 5 to 646 of the mature protein. Most of the FhuA derivatives were found in normal amounts in the outer membrane fraction. Half of these were fully active toward all ligands, demonstrating proper insertion into the outer membrane. Seven of the 12- and 16-amino-acid-insertion derivatives (at residues 378, 402, 405, 415, 417, 456, and 646) were active toward all of the ligands and could be cleaved by subtilisin in whole cells, suggesting a surface location of the extra loops at sites which did not affect FhuA function. Two mutants were sensitive to subtilisin (insertions at residues 511 and 321) but displayed a strongly reduced sensitivity to colicin M and to phages phi 80 and T1. Four of the insertion derivatives (at residues 162, 223, 369, and 531) were cleaved only in spheroplasts and probably form loops at the periplasmic side of the outer membrane. The number and size of the proteolytic fragments indicate cleavage at or close to the sites of insertion, which has been proved for five insertions by amino acid sequencing. Most mutants with functional defects were affected in their sensitivity to all ligands, yet frequently to different degrees. Some mutants showed a specifically altered sensitivity to a few ligands; for example, mutant 511-04 was partially resistant only to colicin M, mutant 241-04 was reduced in ferrichrome and albomycin uptake and showed a reduced colicin M sensitivity, and mutant 321-04 was fully resistant to phage T1 and partially resistant to phage phi 80. The altered residues define preferential binding sites for these ligands. Insertions of 4 to 16 residues at positions 69, 70, 402, 530, 564, and 572 resulted in strongly reduced amounts of FhuA in the outer membrane fraction, varying in function from fully active to inactive. These results provide the basis for a model of FhuA organization in the outer membrane.

Formats available

You can view the full content in the following formats:

Information & Contributors

Information

Published In

cover image Journal of Bacteriology
Journal of Bacteriology
Volume 175Number 3February 1993
Pages: 826 - 839
PubMed: 8423154

History

Published online: 1 February 1993

Permissions

Request permissions for this article.

Contributors

Authors

R Koebnik
Mikrobiologie II, Universität Tübingen, Germany.
V Braun
Mikrobiologie II, Universität Tübingen, Germany.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy