Surveying the Epigenetic Landscape of Tuberculosis in Alveolar Macrophages
ABSTRACT
INTRODUCTION
EVIDENCE OF EPIGENETIC MODIFICTIONS DURING M. TUBERCULOSIS INFECTION
ALVEOLAR MACROPHAGES ARE DISTINCT FROM BLOOD-DERIVED MACROPHAGES
Immune cells in the lung.
Alveolar macrophages.

Method | Model | Differentially expressed genes | Functional pathways | Reference |
---|---|---|---|---|
Transcriptomic | ||||
Microarray | Healthy hAM infected ex vivo | CXCL1,5, HCK, KYNU, GBP2, IFNGR2, CABLES1, TBC1D2, TNFRSF2 | IFN-γ response | 73 |
TB hAM infected ex vivo | IRF1, AIM2, IFIT2,3, MX1, HELZ2, EPSTI1, CSRNP1, CXCL9, SOCS1 | Type I IFN, inflammasome | ||
Microarray | Healthy hAM vs TB hAM | CHIT1, CHI3L1, CCL5,8,22, CXCL5,9, MMP7,9,12, CCND1,2, CCNA1, IL1B, CAMP, TGFB1, MARCO COLEC12, CES1 | Proliferation, phagocytosis, tissue damage | 75 |
RNA-seq | bAM infected ex vivo | Tlr2,4, Cd14, Myd88, Ddx58, Ifih1, Dhx58, Mavs, Casp7,8, Bid, Cycs, Bcl2a1,2,2l1, Cflar, Birc2,3, Xiap, Mcl1, Prkx, Endog, Dffa, Aifm1, Sumf1, Gnptab, Igf2r | Type I IFN, apoptosis, lysosome | 67 |
Metabolic flux analysis | mAM and IFNAR−/− AM infected in vivo | NA | Increased glycolysis in IFNAR−/− AM | 74 |
Dual host-microbe RNA-seq | mAM infected in vivo | Mgl, Lpl, LipA, Dhcr7, Lpin1, PPAR-γ, Gsta3, Prdx1, Srxn1, Hmox1, Sqstm1 | Lipid metabolism, cell division, NRF2 response | 65 |
RNA-seq | bAM infected ex vivo | Abca5, Abca6, Abca10 Abcg1, Abca1, Acat1 | Cholesterol metabolism, autophagy | 76 |
qRT-PCR | Healthy hAM infected ex vivo | NOD2 | Autophagy | 77 |
RNA-seq, ChIP-seq | mAM infected in vivo, 10 days | Nqo1, Cat, Prdx1, Txnrd, Hmox1, Gstm1, Gclm, Gsta3, Me1, Trem1, CCR1, MMP8, CIITA, L1a, Tnf, Rel, Relb, Nfkb2, Ccl2,17, Bhlhe40, Nfe2l2, Tnf, Il1a, Cxcl2,13 | NRF2 response, proinflammatory response | 18 |
Ampli-Seq | Healthy hAM infected ex vivo, 2 h, 24 h, 72 h | IFNG, MT1L, CRNKL1, CXCL2,3, CCL20, PTX3, CSF2, IL-1β, JUN, IL-6, IER3, SERPINB2, CFL1, CLIC1, CTSL, CXCL5, FLNA, IL1RN, SERPINB2 TMBIM6 YBX1, TNF, IL2A, CCL20, CXCL9, STAT1, PTGS2 | IL-10 pathways, TREM1 signaling, IFN signaling | 66 |
qRT-PCR | PPAR-γ−/− mAM infected ex vivo | IL-10, TNF, IL-6, IL-1β | Proinflammatory response | 78 |
RNA-seq | Healthy infant hAM infected ex vivo, healthy adult hAM infected ex vivo | JAK2, STAT1, CYBB, DRAM2, UVRAG, ACP5, FUCA1, ABCA2, CCL2,7,8,13, CXCL1,2,5,6,8,9,10,11, PPBP, TLR3, FCGR1B, SIDT2, ABCA2, CCL8,10,11,13 | Lysosomal maturation, IFN-γ response, mycobacterial activity | 79 |
DNA me | ||||
RRB-seq | Healthy and latent TB hAM | NA | Pentose Phosphate, Ras signaling | 83 |
Illumina BeadChip | Healthy, TB contact and TB patient hAM | NA | Vitamin D metabolism, HIF1-α, P38 signaling | 84 |
Whole-genome bisulfate sequencing | bAM infected ex vivo | Hdac5, Kdm2b, Ezh1, Prdm2, Setmar, Smyd4, Usp12 Intermediate methylation: IL-12RA, C1qb | Chromatin modifiers, NADH dehydrogenase | 87 |
Histone ac/me | ||||
RNA-seq, ATAC-seq, ChIP-seq | Healthy hAM infected ex vivo | CXCL10, IFI44L, APOBEC3A, MX1 | IFN, TNF, NLR, TLR, NF-κB signaling | 89 |
RNA-seq, ChIP-seq | bAM infected ex vivo | Arg2, Bcla2, Sting, Stat1, Osm, Csf3, Cntfr, Irf7, Rac1, Pik3ap1, Trim25, Isg15, Ikbke | PI3/AKT, RIG-I, JAK-STAT signaling | 29 |
ELISA | Healthy hAM infected ex vivo + SAHA | IL-1β, IL-10, | Increased glycolysis, CD4 Th cell response | 92 |
ELISA | Healthy hAM infected ex vivo + RGFP9966 | IL-1β, IL-6, TNF | Enhanced antibacterial response | 30 |
Trained immunity | ||||
ELISA | Healthy hAM ± BCG vaccination | HLA-DR, CD11b | Reduced activation | 103 |
FACS, RNA-seq | mAM ± pulmonary BCG vaccination | MHC-II, CD68, iNOS, Nos2, Ifng, Irf8, Ccl2, Hk2, Ldlr, G6pdx, Ldha | Macrophage activation, metabolism | 103 |
M. tuberculosis killing assays, Metabolic assays, ELISA | mAM ± pulmonary Ad-TB vaccination | MHC-II | Enhanced bacterial killing, macrophage activation, increased glycolysis | 108 |
ELISA, RNA-seq, ATAC-seq | mAM ± contained M. tuberculosis infection | IL-6, Stat1, Stat3, Jak1, Jak2, Tnfaip2, Ifng | Enhanced bacterial killing, inflammation, IFN-γ pathways, IFN-α pathways | 109 |
M. tuberculosis killing assays, ELISA, cytokine PCR array | mAM and neutrophils infected ex vivo after BCG vaccination | NA | Enhanced bacterial killing, protective neutrophil response | 110 |
FACS, M. tuberculosis killing assays | Mouse neutrophils after BCG vaccination and M. tuberculosis challenge | NA | Neutrophil activation, Th1 response | 111 |
ADVANCES IN EPIGENETICS OF ALVEOLAR MACROPHAGES IN TUBERCULOSIS
The transcriptome of alveolar macrophages is altered by M. tuberculosis infection.

DNA methylation contributes to changes in the epigenome of M. tuberculosis-infected alveolar macrophages.
M. tuberculosis induces chromatin structure remodeling in alveolar macrophages.
Alveolar macrophages are reprogrammed by trained immunity.

CLINICAL POTENTIAL OF TARGETING EPIGENETIC MECHANISMS FOR TUBERCULOSIS
CONCLUDING REMARKS
ACKNOWLEDGMENTS
REFERENCES
Author Bios





Information & Contributors
Information
Published In

Copyright
History
Keywords
Contributors
Editor
Metrics & Citations
Metrics
Note: There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
Citation counts come from the Crossref Cited by service.
Citations
If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.