The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.

Get full access to this article

View all available purchase options and get full access to this article.


Guerra F, Brambatti M, Matassini MV, Capucci A. 2017. Current therapeutic options for heart failure in elderly patients. Biomed Res Int 2017:1483873.
Andries E, Gilles A, Topsakal V, Vanderveken OM, Van de Heyning P, Van Rompaey V, Mertens G. 2020. Systematic review of quality of life assessments after cochlear implantation in older adults. Audiol Neurootol 26:61–75.
Hake ME, Davis ME, Perdue AM, Goulet JA. 2019. Modern implant options for the treatment of distal femur fractures. J Am Acad Orthop Surg 27:e867–e875.
Sandhu FA, Dowlati E, Garica R. 2020. Lumbar arthroplasty: past, present, and future. Neurosurgery 86:155–169.
Global Market Insights. 2018. Implantable medical devices market. Global Market Insights, Selbyville, DE.
Darouiche RO. 2004. Treatment of infections associated with surgical implants. New Engl J Med 350:1422–1429.
Percival SL, Suleman L, Vuotto C, Donelli G. 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance, and control. J Med Microbiol 64:323–334.
Arciola CR, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409.
Adlhart C, Verran J, Azevedo NF, Olmez H, Keinänen-Toivola MM, Gouveia I, Melo LF, Crijns F. 2018. Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infect 99:239–249.
Stewart PS, Bjarnsholt T. 2020. Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clin Microbiol Infect 26:1034–1038.
Plachouras D, Kärki T, Hansen S, Hopkins S, Lyytikäinen O, Moro ML, Reilly J, Zarb P, Zingg W, Kinross P, Weist K, Monnet DL, Suetens C. 2018. Antimicrobial use in European acute care hospitals: results from the second point prevalence survey (PPS) of healthcare-associated infections and antimicrobial use, 2016 to 2017. Euro Surveill 23:1800393.
Russo PL, Stewardson AJ, Cheng AC, Bucknall T, Mitchell BG. 2019. The prevalence of healthcare associated infections among adult inpatients at nineteen large Australian acute-care public hospitals: a point prevalence survey. Antimicrob Resist Infect Control 8:114.
Labi A-K, Obeng-Nkrumah N, Owusu E, Bjerrum S, Bediako-Bowan A, Sunkwa-Mills G, Akufo C, Fenny AP, Opintan JA, Enweronu-Laryea C, Debrah S, Damale N, Bannerman C, Newman MJ. 2019. Multi-centre point-prevalence survey of hospital-acquired infections in Ghana. J Hosp Infect 101:60–68.
Fortaleza CMCB, Padoveze MC, Kiffer CRV, Barth AL, Carneiro IC, Giamberardino HIG, Rodrigues JLN, Santos Filho L, de Mello MJG, Pereira MS, Gontijo Filho PP, Rocha M, Servolo de Medeiros EA, Pignatari ACC. 2017. Multi-state survey of healthcare-associated infections in acute care hospitals in Brazil. J Hosp Infect 96:139–144.
De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. 2013. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589.
Mah T, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310.
Figueiredo AMS, Ferreira FA, Beltrame CO, Côrtes MF. 2017. The role of biofilms in persistent infections and factors involved in Ica-independent biofilm development and gene regulation in Staphylococcus aureus. Crit Rev Microbiol 43:602–620.
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755.
Flemming H-CC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575.
Flemming HC, Wuertz S. 2019. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol 17:247–260.
Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623–633.
Yang J, Toyofuku M, Sakai R, Nomura N. 2017. Influence of the alginate production on cell-to-cell communication in Pseudomonas aeruginosa PAO1. Environ Microbiol Rep 9:239–249.
Águila-Arcos S, Álvarez-Rodríguez I, Garaiyurrebaso O, Garbisu C, Grohmann E, Alkorta I. 2017. Biofilm-forming clinical staphylococcus isolates harbor horizontal transfer and antibiotic resistance genes. Front Microbiol 8:1–12.
Wu Y, Cai P, Jing X, Niu X, Ji D, Ashry NM, Gao C, Huang Q. 2019. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environ Int 132:105116.
Sun S, Noorian P, McDougald D. 2018. Dual role of mechanisms involved in resistance to predation by protozoa and virulence to humans. Front Microbiol 9:1–12.
Xu D, Jia R, Li Y, Gu T. 2017. Advances in the treatment of problematic industrial biofilms. World J Microbiol Biotechnol 33:97.
Le KY, Park MD, Otto M. 2018. Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection. Front Microbiol 9:359.
Campoccia D, Mirzaei R, Montanaro L, Arciola CR. 2019. Hijacking of immune defences by biofilms: a multifront strategy. Biofouling 35:1055–1074.
Costerton JW, Stewart PS. 2014. Biofilms and device-related infections, p 423–439. In Persistent bacterial infections. Wiley, Hoboken, NJ.
Hall CW, Mah T-F. 2017. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 41:276–301.
Schlafer S, Meyer RL. 2017. Confocal microscopy imaging of the biofilm matrix. J Microbiol Methods 138:50–59.
Rodríguez-Suárez JM, Butler CS, Gershenson A, Lau BLTT. 2020. Heterogeneous diffusion of polystyrene nanoparticles through an alginate matrix: the role of cross-linking and particle size. Environ Sci Technol 54:5159–5166.
Anderl JN, Franklin MJ, Stewart PS. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824.
Singh R, Ray P, Das A, Sharma M. 2010. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958.
Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. 2013. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 15:2865–2878.
Sinclair P, Carballo-Pacheco M, Allen RJ. 2019. Growth-dependent drug susceptibility can prevent or enhance spatial expansion of a bacterial population. Phys Biol 16.
Fisher RA, Gollan B, Helaine S. 2017. Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464.
Dengler Haunreiter V, Boumasmoud M, Häffner N, Wipfli D, Leimer N, Rachmühl C, Kühnert D, Achermann Y, Zbinden R, Benussi S, Vulin C, Zinkernagel AS. 2019. In-host evolution of Staphylococcus epidermidis in a pacemaker-associated endocarditis resulting in increased antibiotic tolerance. Nat Commun 10:1–14.
Yan J, Bassler BL. 2019. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 26:15–21.
Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210.
Karampatzakis A, Sankaran J, Kandaswamy K, Rice SA, Cohen Y, Wohland T. 2017. Measurement of oxygen concentrations in bacterial biofilms using transient state monitoring by single plane illumination microscopy. Biomed Physics Eng Express 3:e035020.
Arciola CR, Montanaro L, Costerton JW. 2011. New trends in diagnosis and control strategies for implant infections. Int J Artif Organs 34:727–736.
Prinz V, Bayerl S, Renz N, Trampuz A, Vajkoczy P, Finger T. 2019. Sonication improves pathogen detection in ventriculoperitoneal shunt-associated infections. Clin Neurosurg 85:516–523.
Esteban J, Gomez-Barrena E, Cordero J, Martin-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R. 2008. Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol 46:488–492.
Carlson BC, Hines JT, Robinson WA, Sebastian AS, Greenwood-Quaintance KE, Patel R, Huddleston PM. 2020. Implant sonication versus tissue culture for the diagnosis of spinal implant infection. Spine 45:E525–E532.
Langbach O, Kristoffersen AK, Abesha-Belay E, Enersen M, Røkke O, Olsen I. 2016. Oral, intestinal, and skin bacteria in ventral hernia mesh implants. J Oral Microbiol 8:31854.
Al-Ahmad A, Muzafferiy F, Anderson AC, Wölber JP, Ratka-Krüger P, Fretwurst T, Nelson K, Vach K, Hellwig E. 2018. Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16s rRNA gene cloning. J Med Microbiol 67:332–340.
Fritz B, Stavnsbjerg C, Markvart M, Damgaard PDB, Nielsen SH, Bjørndal L, Qvortrup K, Bjarnsholt T. 2019. Shotgun sequencing of clinical biofilm following scanning electron microscopy identifies bacterial community composition. Pathog Dis 77:ftz013.
Ghensi P, Manghi P, Zolfo M, Armanini F, Pasolli E, Bolzan M, Bertelle A, Dell’Acqua F, Dellasega E, Waldner R, Tessarolo F, Tomasi C, Segata N. 2020. Strong oral plaque microbiome signatures for dental implant diseases identified by strain-resolution metagenomics. NPJ Biofilms Microbiomes 6:47.
Baldan R, Sendi P. 2020. Precision medicine in the diagnosis and management of orthopedic biofilm infections. Front Med 7:580671.
Dempsey KE, Riggio MP, Lennon A, Hannah VE, Ramage G, Allan D, Bagg J. 2007. Identification of bacteria on the surface of clinically infected and noninfected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture. Arthritis Res Ther 9:1–11.
Martellacci L, Quaranta G, Patini R, Isola G, Gallenzi P, Masucci L. 2019. A literature review of metagenomics and culturomics of the peri-implant microbiome: current evidence and future perspectives. Materials 12:3010.
Su C, Lei L, Duan Y, Zhang K-Q, Yang J. 2012. Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003.
Green SJ, Leigh MB, Neufeld JD. 2010. Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis, p 4137–4158. In Timmis KN (ed), Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, Germany.
Ercolini D. 2004. PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314.
Fedi S, Tremaroli V, Scala D, Perez-Jimenez JR, Fava F, Young L, Zannoni D. 2005. T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated biphenyls. Res Microbiol 156:201–210.
Amann R, Fuchs BM. 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348.
Greenspon AJ, Patel JD, Lau E, Ochoa JA, Frisch DR, Ho RT, Pavri BB, Kurtz SM. 2011. 16-Year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States. J Am College Cardiol 58:1001–1006.
Mela T, McGovern BA, Garan H, Vlahakes GJ, Torchiana DF, Ruskin J, Galvin JM. 2001. Long-term infection rates associated with the pectoral versus abdominal approach to cardioverter- defibrillator implants. Am J Cardiol 88:750–753.
Maisel WH, Moynahan M, Zuckerman BD, Gross TP, Tovar OH, Tillman D-B, Schultz DB. 2006. Pacemaker and ICD generator malfunctions: analysis of Food and Drug Administration annual reports. JAMA 295:1901.
Tarakji KG, Chan EJ, Cantillon DJ, Doonan AL, Hu T, Schmitt S, Fraser TG, Kim A, Gordon SM, Wilkoff BL. 2010. Cardiac implantable electronic device infections: presentation, management, and patient outcomes. Heart Rhythm 7:1043–1047.
Kirkfeldt RE, Johansen JB, Nohr EA, Jorgensen OD, Nielsen JC. 2014. Complications after cardiac implantable electronic device implantations: an analysis of a complete, nationwide cohort in Denmark. Eur Heart J 35:1186–1194.
Habib A, Le KY, Baddour LM, Friedman PA, Hayes DL, Lohse CM, Wilson WR, Steckelberg JM, Sohail MR. 2013. Predictors of mortality in patients with cardiovascular implantable electronic device infections. Am J Cardiol 111:874–879.
Sohail MR, Uslan DZ, Khan AH, Friedman PA, Hayes DL, Wilson WR, Steckelberg JM, Stoner S, Baddour LM. 2007. Management and outcome of permanent pacemaker and implantable cardioverter-defibrillator infections. J Am College Cardiol 49:1851–1859.
Kusumoto FM, Schoenfeld MH, Wilkoff BL, Berul CI, Birgersdotter-Green UM, Carrillo R, Cha Y-M, Clancy J, Deharo J-C, Ellenbogen KA, Exner D, Hussein AA, Kennergren C, Krahn A, Lee R, Love CJ, Madden RA, Mazzetti HA, Moore JC, Parsonnet J, Patton KK, Rozner MA, Selzman KA, Shoda M, Srivathsan K, Strathmore NF, Swerdlow CD, Tompkins C, Wazni O. 2017. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 14:e503–e551.
Döring M, Richter S, Hindricks G. 2018. The diagnosis and treatment of pacemaker-associated infection. Deutsches Aerzteblatt Online
Ortega-Loubon C, Muñoz-Moreno MF, García IA, Álvarez FJ, Gómez-Sánchez E, Bustamante-Munguira J, Lorenzo-López M, Tamayo-Velasco Á, Jorge-Monjas P, Resino S, Tamayo E, Heredia-Rodríguez M. 2019. Nosocomial versus community-acquired infective endocarditis in Spain: location, trends, clinical presentation, etiology, and survival in the 21st century. J Clin Med
Talha KM, Desimone DC, Sohail MR, Baddour LM. 2020. Pathogen influence on epidemiology, diagnostic evaluation, and management of infective endocarditis. Heart 106:1878–1882.
Mamtani SS, Aljanabi NM, Gupta Rauniyar RP, Acharya A, Malik BH. 2020. Candida endocarditis: a review of the pathogenesis, morphology, risk factors, and management of an emerging and serious condition. Cureus 11:e6345.
Nagpal A, Baddour LM, Sohail MR. 2012. Microbiology and pathogenesis of cardiovascular implantable electronic device infections. Circ Arrhythm Electrophysiol 5:433–441.
Murdoch DR. 2009. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century. Arch Intern Med 169:463–473.
Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta J-P, Del Zotti F, Dulgheru R, El Khoury G, Erba PA, Iung B, Miro JM, Mulder BJ, Plonska-Gosciniak E, Price S, Roos-Hesselink J, Snygg-Martin U, Thuny F, Tornos Mas P, Vilacosta I, Zamorano JL. 2015. 2015 ESC guidelines for the management of infective endocarditis. Eur Heart J 36:3075–3128.
Ali S, Kanjwal Y, Bruhl SR, Alo M, Taleb M, Ali SS, Kabour A, Khawaja O. 2017. A meta-analysis of antibacterial envelope use in prevention of cardiovascular implantable electronic device infection. Ther Adv Infect Dis 4:75–82.
Seymour RA, Lowry R, Whitworth JM, Martin MV. 2000. Infective endocarditis, dentistry, and antibiotic prophylaxis: time for a rethink? Br Dent J 189:610–616.
Nakano K, Inaba H, Nomura R, Nemoto H, Takeda M, Yoshioka H, Matsue H, Takahashi T, Taniguchi K, Amano A, Ooshima T. 2006. Detection of cariogenic Streptococcus mutans in extirpated heart valve and atheromatous plaque specimens. J Clin Microbiol 44:3313–3317.
Li X, Kolltveit KM, Tronstad L, Olsen I. 2000. Systemic diseases caused by oral infection. Clin Microbiol Rev 13:547–558.
Bensing BA, Li L, Yakovenko O, Wong M, Barnard KN, Iverson TM, Lebrilla CB, Parrish CR, Thomas WE, Xiong Y, Sullam PM. 2019. Recognition of specific sialoglycan structures by oral streptococci impacts the severity of endocardial infection. PLoS Pathog 15:e1007896.
Abranches J, Zeng L, Kajfasz JK, Palmer SR, Chakraborty B, Wen ZT, Richards VP, Brady LJ, Lemos JA. 2018. Biology of oral streptococci. Microbiol Spectrum 6:GPP3-0042-2018.
Park SY, Kim SH, Kang SH, Yoon CH, Lee HJ, Yun PY, Youn TJ, Chae IH. 2019. Improved oral hygiene care attenuates the cardiovascular risk of oral health disease: a population-based study from Korea. Eur Heart J 40:1138–1145.
Pierce D, Calkins BC, Thornton K. 2012. Infectious endocarditis: diagnosis and treatment. Am Fam Physician 85:981–986.
Okuda KI, Nagahori R, Yamada S, Sugimoto S, Sato C, Sato M, Iwase T, Hashimoto K, Mizunoe Y. 2018. The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Front Microbiol 9:182.
DeLegge RL, DeLegge MH. 2005. Percutaneous endoscopic gastrostomy evaluation of device materials: are we “failsafe”? Nutr Clin Pract 20:613–617.
Le MN-T, Kayama S, Yoshikawa M, Hara T, Kashiyama S, Hisatsune J, Tsuruda K, Onodera M, Ohge H, Tsuga K, Sugai M. 2020. Oral colonization by antimicrobial-resistant Gram-negative bacteria among long-term care facility residents: prevalence, risk factors, and molecular epidemiology. Antimicrob Resist Infect Control 9:45.
Dautle MP, Wilkinson TR, Gauderer MWL. 2003. Isolation and identification of biofilm microorganisms from silicone gastrostomy devices. J Pediatr Surg 38:216–220.
Trevisani L, Sartori S, Rossi MR, Bovolenta R, Scoponi M, Gullini S, Abbasciano V. 2005. Degradation of polyurethane gastrostomy devices: what is the role of fungal colonization? Dig Dis Sci 50:463–469.
Boulay BR, Parepally M. 2014. Managing malignant biliary obstruction in pancreas cancer: choosing the appropriate strategy. World J Gastroenterol 20:9345–9353.
Kruse EJ. 2010. Palliation in pancreatic cancer. Surg Clinics North Am 90:355–364.
Guaglianone E, Cardines R, Vuotto C, di Rosa R, Babini V, Mastrantonio P, Donelli G. 2010. Microbial biofilms associated with biliary stent clogging. FEMS Immunol Med Microbiol 59:410–420.
Vaishnavi C, Samanta J, Kochhar R. 2018. Characterization of biofilms in biliary stents and potential factors involved in occlusion. World J Gastroenterol 24:112–123.
Weber A, Schneider J, Wagenpfeil S, Winkle P, Riedel J, Wantia N, Feihl S, Römmler F, Baur DM, Schmid RM, Algül H, Huber W. 2013. Spectrum of pathogens in acute cholangitis in patients with and without biliary endoprosthesis. J Infect 67:111–121.
Scheufele F, Aichinger L, Jäger C, Demir IE, Schorn S, Sargut M, Erkan M, Kleeff J, Friess H, Ceyhan GO. 2017. Effect of preoperative biliary drainage on bacterial flora in bile of patients with periampullary cancer. Br J Surg 104:e182–e188.
Lübbert C, Wendt K, Feisthammel J, Moter A, Lippmann N, Busch T, Mössner J, Hoffmeister A, Rodloff AC. 2016. Epidemiology and resistance patterns of bacterial and fungal colonization of biliary plastic stents: a prospective cohort study. PLoS One 11:e0155479.
Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. 2008. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 466:1710–1715.
Nodzo SR, Boyle KK, Spiro S, Nocon AA, Miller AO, Westrich GH. 2017. Success rates, characteristics, and costs of articulating antibiotic spacers for total knee periprosthetic joint infection. Knee 24:1175–1181.
Triffault-Fillit C, Ferry T, Laurent F, Pradat P, Dupieux C, Conrad A, Becker A, Lustig S, Fessy MH, Chidiac C, Valour F, Ferry T, Valour F, Perpoint T, Boibieux A, Biron F, Miailhes P, Ader F, Becker A, Roux S, Triffault-Fillit C, Daoud F, Lippman J, et al. 2019. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: a prospective cohort study. Clin Microbiol Infect 25:353–358.
Lourtet-Hascoët J, Bicart-See A, Félicé MP, Giordano G, Bonnet E. 2016. Staphylococcus lugdunensis, a serious pathogen in periprosthetic joint infections: comparison to Staphylococcus aureus and Staphylococcus epidermidis. Int J Infect Dis 51:56–61.
Lee J, Zilm PS, Kidd SP. 2020. Novel research models for Staphylococcus aureus small colony variants (SCV) development: co-pathogenesis and growth rate. Front Microbiol 11:1–8.
de Mesy Bentley KL, Trombetta R, Nishitani K, Bello-Irizarry SN, Ninomiya M, Zhang L, Chung HL, McGrath JL, Daiss JL, Awad HA, Kates SL, Schwarz EM. 2017. Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J Bone Miner Res 32:985–990.
Paharik AE, Horswill AR. 2016. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4.
Stoodley P, Nistico L, Johnson S, Lasko LA, Baratz M, Gahlot V, Ehrlich GD, Kathju S. 2008. Direct demonstration of viable Staphylococcus aureus biofilms in an infected total joint arthroplasty: a case report. J Bone Joint Surg Ser A 90:1751–1758.
Dastgheyb SS, Hammoud S, Ketonis C, Liu AY, Fitzgerald K, Parvizi J, Purtill J, Ciccotti M, Shapiro IM, Otto M, Hickok NJ. 2015. Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob Agents Chemother 59:2122–2128.
Lew DP, Waldvogel FA. 2004. Osteomyelitis. Lancet 364.
Kelly-Quintos C, Cavacini LA, Posner MR, Goldmann D, Pier GB. 2006. Characterization of the opsonic and protective activity against Staphylococcus aureus of fully human monoclonal antibodies specific for the bacterial surface polysaccharide poly-N-acetylglucosamine. Infect Immun 74:2742–2750.
Maira-Litrán T, Kropec A, Goldmann DA, Pier GB. 2005. Comparative opsonic and protective activities of Staphylococcus aureus conjugate vaccines containing native or deacetylated staphylococcal poly-n-acetyl-β-(1-6)-glucosamine. Infect Immun 73:6752–6762.
Levack AE, Cyphert EL, Bostrom MP, Hernandez CJ, von Recum HA, Carli AV. 2018. Current options and emerging biomaterials for periprosthetic joint infection. Curr Rheumatol Rep 20:33.
Zajonz D, Birke U, Ghanem M, Prietzel T, Josten C, Roth A, Fakler JKM. 2017. Silver-coated modular Megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss: a pilot study of 34 patients. BMC Musculoskelet Disord 18:383.
Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM. 2015. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients. Bone Joint J 97-B.
Mijnendonckx K, Leys N, Mahillon J, Silver S, van Houdt R. 2013. Antimicrobial silver: uses, toxicity, and potential for resistance. Biometals 26:609–621.
Sussman EM, Casey BJ, Dutta D, Dair BJ. 2015. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. J Appl Toxicol 35.
Ciobanu G, Ilisei S, Luca C. 2014. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold. Mater Sci Eng C Mater Biol Appl 35:36–42.
Indelli PF, Ghirardelli S, Iannotti F, Indelli AM, Pipino G. 2021. Nanotechnology as an anti-infection strategy in periprosthetic joint infections (PJI). Trop Med Infect Dis 6.
Ricciardi BF, Muthukrishnan G, Masters EA, Kaplan N, Daiss JL, Schwarz EM. 2020. New developments and future challenges in prevention, diagnosis, and treatment of prosthetic joint infection. J Orthop Res 38:1423–1435.
Lindfors N, Geurts J, Drago L, Arts JJ, Juutilainen V, Hyvönen P, Suda AJ, Domenico A, Artiaco S, Alizadeh C, Brychcy A, Bialecki J, Romanò CL. 2017. Antibacterial bioactive glass, S53P4, for chronic bone infections - a multinational study. Adv Exp Med Biol 971:81–92.
Franceschini M, Sandiford NA, Cerbone V, de Araujo LCT, Kendoff D. 2020. Defensive antibacterial coating in revision total hip arthroplasty: new concept and early experience. HIP Int 30.
Gabrilovich DI, Nagaraj S. 2009. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174.
Sica A, Bronte V. 2007. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166.
Brudecki L, Ferguson DA, McCall CE, El Gazzar M. 2012. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun 80:2026–2034.
Youn J-I, Collazo M, Shalova IN, Biswas SK, Gabrilovich DI. 2012. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91:167–181.
Heim CE, Vidlak D, Kielian T. 2015. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J Leukoc Biol 98:1003–1013.
Niska JA, Shahbazian JH, Ramos RI, Francis KP, Bernthal NM, Miller LS. 2013. Vancomycin-rifampin combination therapy has enhanced efficacy against an experimental Staphylococcus aureus prosthetic joint infection. Antimicrob Agents Chemother 57:5080–5086.
Thrane JF, Sunde NA, Bergholt B, Rosendal F. 2014. Increasing infection rate in multiple implanted pulse generator changes in movement disorder patients treated with deep brain stimulation. Stereotact Funct Neurosurg 92:360–364.
Bjerknes S, Skogseid IM, Saehle T, Dietrichs E, Toft M. 2014. Surgical site infections after deep brain stimulation surgery: frequency, characteristics and management in a 10-year period. PLoS One 9:e105288.
Martin RM, Zimmermann LL, Huynh M, Polage CR. 2018. Diagnostic approach to health care- and device-associated central nervous system infections. J Clin Microbiol 56:e00861-18.
Vinchon M, Dhellemmes P. 2006. Cerebrospinal fluid shunt infection: risk factors and long-term follow-up. Childs Nerv Syst 22:692–697.
Di Rienzo A, Colasanti R, Gladi M, Pompucci A, Della Costanza M, Paracino R, Esposito D, Iacoangeli M. 2020. Sinking flap syndrome revisited: the who, when and why. Neurosurg Rev 43:323–335.
Zarrouk V, Vassor I, Bert F, Bouccara D, Kalamarides M, Bendersky N, Redondo A, Sterkers O, Fantin B. 2007. Evaluation of the management of postoperative aseptic meningitis. Clin Infect Dis 44:1555–1559.
Conen A, Fux CA, Vajkoczy P, Trampuz A. 2017. Management of infections associated with neurosurgical implanted devices. Expert Rev Anti Infect Ther 15:241–255.
Zimmerli W, Trampuz A, Ochsner PE. 2004. Current concepts: prosthetic-joint infections. N Engl J Med 351:1645–1654.
Arocho-Quinones EV, Huang C-C, Ward BD, Pahapill PA. 2019. Care bundle approach to minimizing infection rates after neurosurgical implants for neuromodulation: a single-surgeon experience. World Neurosurg 128:e87–e97.
Gilbert DN, Chambers HF, Eliopoulos GM, Saag MS, Pavia AT (ed). 2019. The Sanford guide to antimicrobial therapy 2019—50 years: 1969-2019. Antimicrobial Therapy, Sperryville, VA.
Chen Y, Zhang L, Qin T, Wang Z, Li Y, Gu B. 2019. Evaluation of neurosurgical implant infection rates and associated pathogens: evidence from 1118 postoperative infections. Neurosurg Focus 47:E6.
Strahm C, Albrich WC, Zdravkovic V, Schöbi B, Hildebrandt G, Schlegel M. 2018. Infection rate after cranial neurosurgical procedures: a prospective single-center study. World Neurosurg 111:e277–e285.
Sabih A, Leslie SW. 2021. Complicated urinary tract infections. In StatPearls, StatPearls Publishing, Treasure Island, FL.
Paick SH, Park HK, Oh SJ, Kim HH. 2003. Characteristics of bacterial colonization and urinary tract infection after indwelling of double-J ureteral stent. Urology 62:214–217.
Riedl CR, Plas E, Hubner WA, Zimmerl H, Ulrich W, Pfluger H. 1999. Bacterial colonization of ureteral stents. Eur Urol 36:53–59.
Kehinde EO, Rotimi VO, Al-awadi KA, Aabdul-Halim H, Boland F, Al-Hunayan A, Pazhoor A. 2002. Factors predisposing to urinary tract infection after J ureteral stent insertion. J Urol 167:1334–1337.
Tenke P, Köves B, Nagy K, Hultgren SJ, Mendling W, Wullt B, Grabe M, Wagenlehner FME, Cek M, Pickard R, Botto H, Naber KG, Johansen TEB. 2012. Update on biofilm infections in the urinary tract. World J Urol 30:51–57.
Scotland KB, Lo J, Grgic T, Lange D. 2019. Ureteral stent-associated infection and sepsis: pathogenesis and prevention: a review. Biofouling 35:117–127.
Wollin TA, Tieszer C, Riddell JV, Denstedt JD, Reid G. 1998. Bacterial biofilm formation, encrustation, and antibiotic adsorption to ureteral stents indwelling in humans. J Endourol 12:101–111.
Tomer N, Garden E, Small A, Palese M. 2021. Ureteral stent encrustation: epidemiology, pathophysiology, management, and current technology. J Urol 201:68–67.
Chew BH, Lange D. 2009. Ureteral stent symptoms and associated infections: a biomaterials perspective. Nat Rev Urol 6:440–448.
Holá V, Ruzicka F, Horka M. 2010. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol Med Microbiol 59:525–528.
Tenke P, Kovacs B, Jäckel M, Nagy E. 2006. The role of biofilm infection in urology. World J Urol 24:13–20.
Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN. 2011. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909.
Lo J, Lange D, Chew BH. 2014. Ureteral stents and Foley catheters-associated urinary tract infections: the role of coatings and materials in infection prevention. Antibiotics 3:87–97.
Andersen MJ, Flores-Mireles AL. 2019. Urinary catheter coating modifications: the race against catheter-associated infections. Coatings 10.
Singha P, Locklin J, Handa H. 2017. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater 50.
Al-Qahtani M, Safan A, Jassim G, Abadla S. 2019. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: a review on recent updates. J Infect Public Health 12:760–766.
Gayani B, Dilhari A, Kottegoda N, Ratnaweera DR, Weerasekera MM. 2021. Reduced crystalline biofilm formation on superhydrophobic silicone urinary catheter materials. ACS Omega 6.
Mosayyebi A, Lange D, Yann Yue Q, Somani BK, Zhang X, Manes C, Carugo D. 2019. Reducing deposition of encrustation in ureteric stents by changing the stent architecture: a microfluidic-based investigation. Biomicrofluidics 13:1–15.
Isguven S, Chung PH, Machado P, Delaney LJ, Chen AF, Forsberg F, Hickok NJ. 2020. Minimizing penile prosthesis implant infection: what can we learn from orthopedic surgery? Urology 146:6–14.
Dawn LE, Henry GD, Tan GK, Wilson SK. 2017. Biofilm and infectious agents present at the time of penile prosthesis revision surgery: times are a changing. Sex Med Rev 5:236–243.
Henry GD, Wilson SK, Delk JR, Carson CC, Silverstein AD, Cleves MA, Donatucci CF. 2004. Penile prosthesis cultures during revision surgery: a multicenter study. J Urol 172:153–156.
Silverstein AD, Henry GD, Evans B, Pasmore M, Simmons CJ, Donatucci CF. 2006. Biofilm formation on clinically noninfected penile prostheses. J Urol 176:1008–1011.
O’Grady NP, Alexander M, Burns LA, Dellinger EP, Garland J, Heard SO, Lipsett PA, Masur H, Mermel LA, Pearson ML, Raad II, Randolph AG, Rupp ME, Saint S, Healthcare Infection Control Practices Advisory Committee (HICPAC). 2011. Guidelines for the prevention of intravascular catheter-related infections Clin Infect Dis 52.
Satou K, Kusanagi R, Nishizawa A, Hori S. 2018. Scrubbing technique for needleless connectors to minimize contamination risk. J Hosp Infect 100:e200–e203.
Moureau N. 2015. Disinfection of needleless connector hubs: clinical evidence systematic review. J Assoc Vasc Access 20:266.
Chernecky C, Waller J. 2011. Comparative evaluation of five needleless intravenous connectors. J Adv Nursing 67:1601–1613.
Schulze A, Mitterer F, Pombo JP, Schild S. 2021. Biofilms by bacterial human pathogens: clinical relevance—development, composition and regulation—therapeutic strategies. Microbial Cell 8:28–56.
Scoppettuolo G, Donato C, De Carolis E, Vella A, Vaccaro L, La Greca A, Fantoni M. 2014. Candida utilis catheter-related bloodstream infection. Med Mycol Case Rep 6:70–72.
Wisplinghoff H, Ebbers J, Geurtz L, Stefanik D, Major Y, Edmond MB, Wenzel RP, Seifert H. 2014. Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features, and antifungal susceptibilities. Int J Antimicrob Agents 43:78–81.
Maki DG, Kluger DM, Crnich CJ. 2006. The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clinic Proc 81:1159–1171.
Albert O, Bonnet E, Cassard B, Chambrier C, Charmillon A, Diamantis S, Gachot B, Lafaurie M, Lebeaux D, Lucas N, Strady C, Toubiana J. 2021. Antibiotic lock therapy for the conservative treatment of long-term intravenous catheter-related infections in adults and children: when and how to proceed? Guidelines for clinical practice 2020. Infect Dis Now 51:236–246.
Messing B, Peitra-Cohen S, Debure A, Beliah M, Bernier JJ. 1988. Antibiotic-lock technique: a new approach to optimal therapy for catheter-related sepsis in home-parenteral nutrition patients. J Parenteral Enteral Nutr 12:185–189.
Norris LAB, Kablaoui F, Brilhart MK, Bookstaver PB. 2017. Systematic review of antimicrobial lock therapy for prevention of central-line-associated bloodstream infections in adult and pediatric cancer patients. Int J Antimicrob Agents
Bookstaver B, Justo JA. 2014. Antibiotic lock therapy: review of technique and logistical challenges. Infect Drug Resist 7:343.
Moon DJ, Deva AK. 2021. Adverse events associated with breast implants: the role of bacterial infection and biofilm. Clin Plastic Surg 48:101–108.
Gabriel SE, Woods JE, O’Fallon WM, Beard CM, Kurland LT, Melton LJ. 1997. Complications leading to surgery after breast implantation. New Engl J Med 336:677–682.
Camirand A, Doucet J. 2000. Breast augmentation: teaching our patients how compression can help prevent capsular contracture. Aesthetic Plast Surg 24:221–226.
Wiener TC. 2008. Relationship of incision choice to capsular contracture. Aesthetic Plast Surg 32:303–306.
Namnoum JD, Largent J, Kaplan HM, Oefelein MG, Brown MH. 2013. Primary breast augmentation clinical trial outcomes stratified by surgical incision, anatomical placement and implant device type. J Plast Reconstruct Aesthetic Surg 66:1165–1172.
Montemurro P, Demir IA, Cheema M, Hedén P. 2018. Exploring the genetic role of capsular contracture in three family generations with a case report and a literature review. Aesthetic Surg J 38:6–9.
Stevens WG, Nahabedian MY, Calobrace MB, Harrington JL, Capizzi PJ, Cohen R, D’incelli RC, Beckstrand M. 2013. Risk factor analysis for capsular contracture: a 5-year sientra study analysis using round, smooth, and textured implants for breast augmentation. Plast Reconstruct Surg 132:1115–1123.
Pajkos A, Deva AK, Vickery K, Cope C, Chang L, Cossart YE. 2003. Detection of subclinical infection in significant breast implant capsules. Plast Reconstruct Surg 111:1605–1611.
Schrem S, Heine N, Eisenmann-Klein M, Prantl L. 2007. Bacterial colonization is of major relevance for high-grade capsular contracture after augmentation mammoplasty. Ann Plast Surg 59:126–130.
Ahn CY, Ko CY, Wagar EA, Wong RS, Shaw WW. 1996. Microbial evaluation: 139 implants removed from symptomatic patients. Plast Reconstruct Surg 98:1225–1229.
Washer LL, Gutowski K. 2012. Breast Implant Infections. Infect Dis Clinics North Am 26:111–125.
Ajdic D, Zoghbi Y, Gerth D, Panthaki ZJ, Thaller S. 2016. The relationship of bacterial biofilms and capsular contracture in breast implants. Aesthetic Surg J 36:297–309.
Jacombs A, Tahir S, Hu H, Deva AK, Almatroudi A, Wessels WLF, Bradshaw DA, Vickery K. 2014. In vitro and in vivo investigation of the influence of implant surface on the formation of bacterial biofilm in mammary implants. Plast Reconstruct Surg 133:471–480.
Yeo IS, Kim HY, Lim KS, Han JS. 2012. Implant surface factors and bacterial adhesion: a review of the literature. Int J Artif Organs 35:762–772.
Wong CH, Samuel M, Tan BK, Song C. 2006. Capsular contracture in subglandular breast augmentation with textured versus smooth breast implants: a systematic review. Plast Reconstruct Surg 118:1224–1236.
Liu X, Zhou L, Pan F, Gao Y, Yuan X, Fan D. 2015. Comparison of the postoperative incidence rate of capsular contracture among different breast implants: a cumulative meta-analysis. PLoS One 10:e0116071.
Keech JA, Creech BJ. 1997. Anaplastic T-cell lymphoma in proximity to a saline-filled breast implant. Plast Reconstruct Surg 100:554–555.
Hu H, Johani K, Almatroudi A, Vickery K, Van Natta B, Kadin ME, Brody G, Clemens M, Cheah CY, Lade S, Joshi PA, Prince HM, Deva AK. 2016. Bacterial biofilm infection detected in breast implant-associated anaplastic large-cell lymphoma. Plast Reconstruct Surg 137:1659–1669.
Cordeiro PG, Ghione P, Ni A, Hu Q, Ganesan N, Galasso N, Dogan A, Horwitz SM. 2020. Risk of breast implant associated anaplastic large cell lymphoma (BIA-ALCL) in a cohort of 3546 women prospectively followed long term after reconstruction with textured breast implants. J Plast Reconstruct Aesthetic Surg 73:841–846.
Wiener TC. 2012. Minimizing capsular contracture in a “clean-contaminated site.” Aesthetic Surg J 32.
Wixtrom RN, Stutman RL, Burke RM, Mahoney AK, Codner MA. 2012. Risk of breast implant bacterial contamination from endogenous breast flora, prevention with nipple shields, and implications for biofilm formation. Aesthetic Surg J 32.
Awad AN, Heiman AJ, Patel A. 2021. Implants and breast pocket irrigation: outcomes of antibiotic, antiseptic, and saline irrigation. Aesthetic Surg J
Barker AS, Law J, Nicholson M, Collett D, Deva AK. 2020. The reversed glove sleeve: a readily available and cost-effective way to achieve “no touch” breast implant insertion. Plast Reconstr Surg - Glob Open 8:e2650.
Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, Fitzgerald MG, Fulton RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J, Wollam AM, et al. 2012. Structure, function, and diversity of the healthy human microbiome. Nature 486:207–214.
Awano S, Ansai T, Takata Y, Soh I, Akifusa S, Hamasaki T, Yoshida A, Sonoki K, Fujisawa K, Takehara T. 2008. Oral health and mortality risk from pneumonia in the elderly. J Dent Res 87:334–339.
Beck JD, Offenbacher S. 2005. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 76:2089–2100.
Genco RJ, Grossi SG, Ho A, Nishimura F, Murayama Y. 2005. A proposed model linking inflammation to obesity, diabetes, and periodontal infections. J Periodontol 76:2075–2084.
Joshipura KJ, Rimm EB, Douglass CW, Trichopoulos D, Ascherio A, Willett WC. 1996. Poor oral health and coronary heart disease. J Dent Res 75:1631–1636.
Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. 2007. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect 13:3–10.
Grössner-Schreiber B, Teichmann J, Hannig M, Dörfer C, Wenderoth DF, Ott SJ. 2009. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clinical Oral Implants Res 20:817–826.
Renvert S, Roos-Jansåker A-M, Claffey N. 2008. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 35:305–315.
Cenci MS, Lund RG, Pereira CL, de Carvalho RM, Demarco FF. 2006. In vivo and in vitro evaluation of class II composite resin restorations with different matrix systems. J Adhesive Dent 8:127–32.
Beyth N, Bahir R, Matalon S, Domb AJ, Weiss EI. 2008. Streptococcus mutans biofilm changes surface-topography of resin composites. Dent Mater 24:732–736.
Busscher HJ, Rinastiti M, Siswomihardjo W, van der Mei HC. 2010. Biofilm formation on dental restorative and implant materials. J Dent Res 89:657–665.
Papaioannou W, Gizani S, Nassika M, Kontou E, Nakou M. 2007. Adhesion of Streptococcus mutans to different types of brackets. Angle Orthod 77:1090–1095.
Lee A, Wang HLH-L. 2010. Biofilm related to dental implants. Implant Dent 19:387–393.
Larsen T, Fiehn N-E. 2017. Dental biofilm infections: an update. APMIS 125:376–384.
Marsh PD. 2005. Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32:7–15.
Fürst MM, Salvi GE, Lang NP, Persson GR. 2007. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res 18:501–508.
Quirynen M, Vogels R, Peeters W, van Steenberghe D, Naert I, Haffajee A. 2006. Dynamics of initial subgingival colonization of ‘pristine’ peri-implant pockets. Clin Oral Implants Res 17:25–37.
Botero JE, González AM, Mercado RA, Olave G, Contreras A. 2005. Subgingival microbiota in peri-implant mucosa lesions and adjacent teeth in partially edentulous patients. J Periodontol 76:1490–1495.
Tabanella G, Nowzari H, Slots J. 2009. Clinical and microbiological determinants of ailing dental implants. Clin Implant Dent Relat Res 11:24–36.
Jain A, Rai A, Singh A, Taneja S. 2020. Efficacy of preoperative antibiotics in prevention of dental implant failure: a meta-analysis of randomized controlled trials. Oral Maxillofacial Surg 24:469–475.
Alghamdi HS, Jansen JA. 2020. The development and future of dental implants. Dent Mater J 39:167–172.
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. 2020. Design of dental implants at materials level: an overview. J Biomed Mater Res Part A 108:1634–1661.
Page MA, Mathers WD. 2013. Acanthamoeba keratitis: a 12-year experience covering a wide spectrum of presentations, diagnoses, and outcomes. J Ophthalmol 2013:670242.
Khalil MA, Sonbol FI. 2014. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus. Niger J Clin Pract 17:776–784.
Willcox MDP, Harmis N, Cowell BA, Williams T, Holden BA. 2001. Bacterial interactions with contact lenses; effects of lens material, lens wear, and microbial physiology. Biomaterials 22:3235–3247.
Thomas PA, Kaliamurthy J. 2013. Mycotic keratitis: epidemiology, diagnosis, and management. Clin Microbiol Infect 19:210–220.
Bispo P, Haas W, Gilmore M. 2015. Biofilms in infections of the eye. Pathogens 4:111–136.
Dutta D, Cole N, Willcox M. 2012. Factors influencing bacterial adhesion to contact lenses. Mol Vision 18:14–21.
Read ML, Navascues-Cornago M, Keir N, Maldonado-Codina C, Morgan PB. 2020. The impact of contact lens wear on ocular surface mucins using a novel clinical fluorescence imaging system. Contact Lens Anterior Eye 43:378–388.
Ruiz-Alcocer J, Monsálvez-Romín D, García-Lázaro S, Albarrán-Diego C, Hernández-Verdejo JL, Madrid-Costa D. 2018. Impact of contact lens material and design on the ocular surface. Clin Exp Optometry 101:188–192.
Morgan PB, Murphy PJ, Gifford KL, Gifford P, Golebiowski B, Johnson L, Makrynioti D, Moezzi AM, Moody K, Navascues-Cornago M, Schweizer H, Swiderska K, Young G, Willcox M. 2021. CLEAR: effect of contact lens materials and designs on the anatomy and physiology of the eye. Contact Lens Anterior Eye 44:192–219.
Stapleton F, Tan J. 2017. Impact of contact lens material, design, and fitting on discomfort. Eye Contact Lens Sci Clin Pract 43:32–39.
Robertson DM, Parks QM, Young RL, Kret J, Poch KR, Malcolm KC, Nichols DP, Nichols M, Zhu M, Cavanagh HD, Nick JA. 2011. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest Ophthalmol Vis Sci 52:2844–2850.
Cho P, Boost MV. 2019. Evaluation of prevention and disruption of biofilm in contact lens cases. Ophthalmic Physiol Opt 39:337–349.
Cope JR, Collier SA, Nethercut H, Jones JM, Yates K, Yoder JS. 2017. Risk behaviors for contact lens-related eye infections among adults and adolescents—United States, 2016. MMWR Morb Mortal Wkly Rep 66:841–845.
Dosler S, Hacioglu M, Yilmaz FN, Oyardi O. 2020. Biofilm modelling on the contact lenses and comparison of the in vitro activities of multipurpose lens solutions and antibiotics. PeerJ 8:e9419.
Efron N, Morgan PB. 2017. Rethinking contact lens aftercare. Clin Exp Optometry 100.
di Onofrio V, Gesuele R, Maione A, Liguori G, Liguori R, Guida M, Nigro R, Galdiero E. 2019. Prevention of Pseudomonas aeruginosa biofilm formation on soft contact lenses by allium sativum fermented extract (BGE) and cannabinol oil extract (CBD). Antibiotics 8:258.
Ádám A, Pál Z, Terhes G, Szucs M, Gabay ID, Urbán E. 2018. Culture- and PCR-based detection of BV associated microbiological profile of the removed IUDs and correlation with the time period of IUD in place and the presence of the symptoms of genital tract infection. Ann Clin Microbiol Antimicrob 17:40.
Madden T, Grentzer JM, Secura GM, Allsworth JE, Peipert JF. 2012. Risk of bacterial vaginosis in users of the intrauterine device: a longitudinal study. Sex Transm Dis 39:217–222.
Pál Z, Urbán E, Dósa E, Pál A, Nagy E. 2005. Biofilm formation on intrauterine devices in relation to duration of use. J Med Microbiol 54:1199–1203.
Taylor BD, Darville T, Haggerty CL. 2013. Does bacterial vaginosis cause pelvic inflammatory disease? Sex Transmit Dis 40:117–122.
Lazarevic V, Gaïa N, Emonet S, Girard M, Renzi G, Despres L, Wozniak H, Yugueros Marcos J, Veyrieras J-B, Chatellier S, van Belkum A, Pugin J, Schrenzel J. 2014. Challenges in the culture-independent analysis of oral and respiratory samples from intubated patients. Front Cell Infect Microbiol 4:65.
Gibbs K, Holzman IR. 2012. Endotracheal tube: friend or foe? Bacteria, the endotracheal tube, and the impact of colonization and infection. Semin Perinatol 36:454–461.
Craven DE, Hjalmarson KI. 2010. Ventilator-associated tracheobronchitis and pneumonia: thinking outside the box. Clin Infect Dis 51:S59–S66.
Antonelli PJ, Lee JC, Burne RA. 2004. Bacterial biofilms may contribute to persistent cochlear implant infection. Otol Neurotol 25:953–957.
Cristobal R, Edmiston CE, Runge-Samuelson CL, Owen HA, Firszt JB, Wackym PA. 2004. Fungal biofilm formation on cochlear implant hardware after antibiotic-induced fungal overgrowth within the middle ear. Pediatr Infect Dis J 23:774–778.
Pawlowski KS, Wawro D, Roland PS. 2005. Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 26:972–975.
Ruellan K, Frijns JHM, Bloemberg GV, Hautefort C, Van Den Abbeele T, Lamers GEM, Herman P, Ba Huy PT, Kania RE. 2010. Detection of bacterial biofilm on cochlear implants removed because of device failure, without evidence of infection. Otol Neurotol 31:1320–1324.
Gaddy JA, Actis LA. 2009. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 4:273–278.
Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582.
Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, Millar MR. 2006. Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Infect Control Hosp Epidemiol 27:654–658.
Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. 2003. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system. Microbiology 149:3473–3484.
Maragakis LL, Perl TM. 2008. Antimicrobial resistance: Acinetobacter baumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis 46:1254–1263.
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG. 2010. The human oral microbiome. J Bacteriol 192:5002–5017.
Romanos GE, Biltucci MT, Kokaras A, Paster BJ. 2016. Bacterial composition at the implant-abutment connection under loading in vivo. Clin Implant Dent Relat Res 18:138–145.
Persson GR, Renvert S. 2014. Cluster of bacteria associated with peri-implantitis. Clin Implant Dent Relat Res 16:783–793.
Kojic EM, Darouiche RO. 2004. Candida infections of medical devices. Clin Microbiol Rev 17:255–267.
Heilmann C. 2011. Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715:105–123.
Becker K, Heilmann C, Peters G. 2014. Coagulase-negative staphylococci. Clin Microbiol Rev 27:870–926.
Galar A, Weil AA, Dudzinski DM, Muñoz P, Siedner MJ. 2019. Methicillin-resistant staphylococcus aureus prosthetic valve endocarditis: pathophysiology, epidemiology, clinical presentation, diagnosis, and management. Clin Microbiol Rev 32.
Haddad Kashani H, Schmelcher M, Sabzalipoor H, Seyed Hosseini E, Moniri R. 2017. Recombinant endolysins as potential therapeutics against antibiotic-resistant Staphylococcus aureus: current status of research and novel delivery strategies. Clin Microbiol Rev 31.
Mosolygó T, Kincses A, Csonka A, Tönki ÁS, Witek K, Sanmartín C, Marć MA, Handzlik J, Kieć-Kononowicz K, Domínguez-Álvarez E, Spengler G. 2019. Selenocompounds as novel antibacterial agents and bacterial efflux pump inhibitors. Molecules 24:1487.
Lakhundi S, Zhang K. 2018. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev 31.
Kranjec C, Morales Angeles D, Torrissen Mårli M, Fernández L, García P, Kjos M, Diep DB.
Nguyen HTT, Nguyen TH, Otto M. 2020. The staphylococcal exopolysaccharide PIA: biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J 18:3324–3334.
de Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. 2020. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev 33:e00181-19.
Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2017. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev 30:409–447.
Mea HJ, Yong PVC, Wong EH. 2021. An overview of Acinetobacter baumannii pathogenesis: motility, adherence, and biofilm formation. Microbiol Res 247:126722.
Colquhoun JM, Rather PN. 2020. Insights into mechanisms of biofilm formation in Acinetobacter baumannii and implications for uropathogenesis. Front Cell Infect Microbiol 10.
Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. 2012. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707.
Davin-Regli A, Lavigne J-P, Pagès J-M. 2019. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clin Microbiol Rev 32:e00002-19.
Wang G, Zhao G, Chao X, Xie L, Wang H. 2020. The characteristic of virulence, biofilm, and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health 17:1–17.
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. 2020. Molecular determinants of surface colonization in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 44:314–350.
Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. 2019. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:e00031-19.
Scales BS, Dickson RP, LiPuma JJ, Huffnagle GB. 2014. Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans. Clin Microbiol Rev 27:927–948.
Behzadi P, Baráth Z, Gajdács M. 2021. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics 10:42.
Urwin L, Okurowska K, Crowther G, Roy S, Garg P, Karunakaran E, MacNeil S, Partridge LJ, Green LR, Monk PN. 2020. Corneal infection models: tools to investigate the role of biofilms in bacterial keratitis. Cells 9:2450.
García-Solache M, Rice LB. 2019. The Enterococcus: a model of adaptability to its environment. Clin Microbiol Rev 32:1–28.
Gipson KS, Nickerson KP, Drenkard E, Llanos-Chea A, Dogiparthi SK, Lanter BB, Hibbler RM, Yonker LM, Hurley BP, Faherty CS. 2020. The great ESKAPE: exploring the crossroads of bile and antibiotic resistance in bacterial pathogens. Infect Immun 88:e00865-19.
Dréno B, Pécastaings S, Corvec S, Veraldi S, Khammari A, Roques C. 2018. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J Eur Acad Dermatol Venereol 32:5–14.
Mayslich C, Grange PA, Dupin N. 2021. Cutibacterium acnes as an opportunistic pathogen: an update of its virulence-associated factors. Microorganisms 9:303.
Foster AL, Cutbush K, Ezure Y, Schuetz MA, Crawford R, Paterson DL. 2020. Cutibacterium (Proprionibacterium) acnes in shoulder surgery: a scoping review of strategies for prevention, diagnosis and treatment. J Shoulder Elbow Surg
Corvec S. 2018. Clinical and biological features of Cutibacterium (formerly Propionibacterium) avidum, an underrecognized microorganism. Clin Microbiol Rev 31:1–42.
Ravaioli S, Campoccia D, Speziale P, Pietrocola G, Zatorska B, Maso A, Presterl E, Montanaro L, Arciola CR. 2020. Various biofilm matrices of the emerging pathogen Staphylococcus lugdunensis: exopolysaccharides, proteins, eDNA, and their correlation with biofilm mass. Biofouling 36:86–100.
Heilbronner S, Foster TJ. 2021. Staphylococcus lugdunensis: a skin commensal with invasive pathogenic potential. Clin Microbiol Rev 34:e00205-20.
Douedi S, Upadhyaya VD, Obagi A, Hossain M. 2020. Aggressive Staphylococcus lugdunensis endocarditis in a young healthy patient: a case report. Cardiol Res 11:192–195.
Yamazaki K, Minakata K, Sakamoto K, Sakai J, Ide Y, Kawatou M, Kanemitsu H, Ikeda T, Minatoya K, Sakata R. 2020. A case of aggressive aortic prosthetic valve endocarditis aggressive caused by Staphylococcus lugdunensis. Surg Case Rep 6:280.
Isabel R, Monica M. 2019. Cutibacterium avidum: a rare but expected agent of breast implant infection. IDCases 17:e00546.
Maurer SM, Kursawe L, Rahm S, Prinz J, Zinkernagel AS, Moter A, Kuster SP, Zbinden R, Zingg PO, Achermann Y. 2021. Cutibacterium avidum resists surgical skin antisepsis in the groin: a potential risk factor for periprosthetic joint infection: a quality control study. Antimicrobial Resist Infect Control 10:27.
Hughes S, Troise O, Donaldson H, Mughal N, Moore LSP. 2020. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clin Microbiol Infect 26:1395–1399.
Montoya-Hinojosa E, Bocanegra-Ibarias P, Garza-González E, Alonso-Ambriz ÓM, Salazar-Mata GA, Villarreal-Treviño L, Pérez-Alba E, Camacho-Ortiz A, Morfín-Otero R, Rodríguez-Noriega E, Flores-Treviño S. 2020. Discrimination of biofilm-producing Stenotrophomonas maltophilia clinical strains by matrix-assisted laser desorption ionization–time of flight. PLoS One 15:e0244751.
Pompilio A, Ranalli M, Piccirilli A, Perilli M, Vukovic D, Savic B, Krutova M, Drevinek P, Jonas D, Fiscarelli EV., Tuccio Guarna Assanti V, Tavío MM, Artiles F, Di Bonaventura G. 2020. Biofilm formation among Stenotrophomonas maltophilia isolates has clinical relevance: the ANSELM prospective multicenter study. Microorganisms 9:49.
Ramos JN, Souza C, Faria YV, da Silva EC, Veras JFC, Baio PVP, Seabra SH, de Oliveira Moreira L, Hirata Júnior R, Mattos-Guaraldi AL, Vieira VV. 2019. Bloodstream and catheter-related infections due to different clones of multidrug-resistant and biofilm producer Corynebacterium striatum. BMC Infect Dis 19:672.
Kalt F, Schulthess B, Sidler F, Herren S, Fucentese SF, Zingg PO, Berli M, Zinkernagel AS, Zbinden R, Achermann Y. 2018. Corynebacterium species rarely cause orthopedic infections. J Clin Microbiol 56:e01200-18.
De Souza C, Mota HF, Faria YV, Cabral FDO, De Oliveira DR, Sant’Anna L de O, Nagao PE, Santos CDS, Moreira LO, Mattos-Guaraldi AL. 2020. Resistance to antiseptics and disinfectants of planktonic and biofilm-associated forms of Corynebacterium striatum. Microb Drug Resist 26:1546–1558.
Tong JCK, Sparrow EM, Abraham JP. 2007. Numerical simulation of the urine flow in a stented ureter. J Biomech Eng 129:187–192.
Wheeler JD, Secchi E, Rusconi R, Stocker R. 2019. Not just going with the flow: the effects of fluid flow on bacteria and plankton. Annu Rev Cell Dev Biol 35:213–237.
Rusconi R, Guasto JS, Stocker R. 2014. Bacterial transport suppressed by fluid shear. Nat Physics 10:212–217.
Secchi E, Vitale A, Miño GL, Kantsler V, Eberl L, Rusconi R, Stocker R. 2020. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat Commun 11:2851.
Kaya T, Koser H. 2012. Direct upstream motility in Escherichia coli. Biophys J 102:1514–23.
Hill J, Kalkanci O, McMurry JL, Koser H. 2007. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:e068101.
Shen Y, Siryaporn A, Lecuyer S, Gitai Z, Stone HA. 2012. Flow directs surface-attached bacteria to twitch upstream. Biophys J 103:146–151.
Chatelet DS, Matthews MA, Rost TL. 2006. Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants. Ann Bot 98:483–494.
Miyata M, Ryu WSS, Berg HCC. 2002. Force and velocity of Mycoplasma mobile gliding. J Bacteriol 184:1827–1831.
Kannan A, Yang Z, Kim MK, Stone HA, Siryaporn A. 2018. Dynamic switching enables efficient bacterial colonization in flow. Proc Natl Acad Sci USA 115:5438–5443.
Siryaporn A, Kim MK, Shen Y, Stone HA, Gitai Z. 2015. Colonization, competition, and dispersal of pathogens in fluid flow networks. Curr Biol 25:1201–1207.
Lecuyer S, Rusconi R, Shen Y, Forsyth A, Vlamakis H, Kolter R, Stone HA. 2011. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys J 100:341–350.
Thomas WE, Vogel V, Sokurenko E. 2008. Biophysics of catch bonds. Annu Rev Biophys 37:399–416.
Weaver WM, Dharmaraja S, Milisavljevic V, Di Carlo D. 2011. The effects of shear stress on isolated receptor-ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab Chip 11:883–889.
Pappelbaum KI, Gorzelanny C, Grässle S, Suckau J, Laschke MW, Bischoff M, Bauer C, Schorpp-Kistner M, Weidenmaier C, Schneppenheim R, Obser T, Sinha B, Schneider SW. 2013. Ultralarge von willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 128:50–59.
Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z. 2014. Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci USA 111:16860–16865.
Rodesney CA, Roman B, Dhamani N, Cooley BJ, Touhami A, Gordon VD. 2017. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development. Proc Natl Acad Sci USA 114:5906–5911.
Dufrêne YF, Persat A. 2020. Mechanomicrobiology: how bacteria sense and respond to forces. Nat Rev Microbiol 18:227–240.
Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A. 2012. Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res 46:5499–5508.
Stoodley P, Dodds I, Boyle JDD, Lappin-Scott HMM. 1998. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19S–28S.
Wang L, Keatch R, Zhao Q, Wright JA, Bryant CE, Redmann AL, Terentjev EM. 2018. Influence of type I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution. Appl Environ Microbiol 84:1–13.
Pearce P, Song B, Skinner DJ, Mok R, Hartmann R, Singh PK, Jeckel H, Oishi JS, Drescher K, Dunkel J. 2019. Flow-induced symmetry breaking in growing bacterial biofilms. Phys Rev Lett 123:258101.
Rusconi R, Lecuyer S, Guglielmini L, Stone HA. 2010. Laminar flow around corners triggers the formation of biofilm streamers. J R Soc Interface 7:1293–1299.
Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA. 2011. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys J 100:1392–1399.
Guglielmini L, Rusconi R, Lecuyer S, Stone HA. 2011. Three-dimensional features in low-Reynolds-number confined corner flows. J Fluid Mech 668:33–57.
Autrusson N, Guglielmini L, Lecuyer S, Rusconi R, Stone Ha. 2011. The shape of an elastic filament in a two-dimensional corner flow. Physics Fluids 23:e063602.
Drescher K, Shen Y, Bassler BL, Stone Ha. 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc Natl Acad Sci USA 110:4345–4350.
Kevin Kim M, Drescher K, Shun Pak O, Bassler BL, Stone HA. 2014. Filaments in curved streamlines: rapid formation of Staphylococcus aureus biofilm streamers. New J Physics 16.
Nadell CD, Ricaurte D, Yan J, Drescher K, Bassler BL. 2017. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. eLife 6:21855.
Reference deleted.
Flemming H-C, Neu T, Wingender J. 2015. The perfect slime. IWA Publishing, London, United Kingdom.
Stoodley P, Dodds I, Boyle JD, Lappin-Scott HMM. 1999. Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85:19–28.
Conrad JC, Poling-Skutvik R. 2018. Confined flow: consequences and implications for bacteria and biofilm. Annu Rev Chem Biomol Eng 9:175–200.
Pavlovsky L, Sturtevant RA, Younger JG, Solomon MJ. 2015. Effects of temperature on the morphological, polymeric, and mechanical properties of Staphylococcus epidermidis bacterial biofilms. Langmuir 31:2036–2042.
Emge P, Moeller J, Jang H, Rusconi R, Yawata Y, Stocker R, Vogel V. 2016. Resilience of bacterial quorum sensing against fluid flow. Sci Rep 6:33115.
Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. 2004. Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93:e98102.
Ikenberry SO, Sherman S, Hawes RH, Smith M, Lehman GA. 1994. The occlusion rate of pancreatic stents. Gastrointest Endoscopy 40:611–613.
Donelli G, Guaglianone E, Di Rosa R, Fiocca F, Basoli A. 2007. Plastic biliary stent occlusion: factors involved and possible preventive approaches. Clin Med Res 5:53–60.
Soderlund C, Linder S. 2006. Covered metal versus plastic stents for malignant common bile duct stenosis: a prospective, randomized, controlled trial. Gastrointest Endosc 63:986–995.
Schaeffer CR, Hoang T-MN, Sudbeck CM, Alawi M, Tolo IE, Robinson DA, Horswill AR, Rohde H, Fey PD. 2016. Versatility of biofilm matrix molecules in Staphylococcus epidermidis clinical isolates and importance of polysaccharide intercellular adhesin expression during high shear stress. mSphere 1:e00165-16.
Weaver WM, Milisavlijevic V, Di Carlo D. 2012. Fluid flow induces biofilm formation in Staphylococcus epidermidis polysaccharide intracellular adhesin-positive clinical isolates. Appl Environ Microbiol 78:5890–5896.
De Grazia A, LuTheryn G, Meghdadi A, Mosayyebi A, Espinosa-Ortiz E, Gerlach R, Carugo D. 2020. A microfluidic-based investigation of bacterial attachment in ureteral stents. Micromachines 11:408.
Murray BO, Flores C, Williams C, Flusberg DA, Marr EE, Kwiatkowska KM, Charest JL, Isenberg BC, Rohn JL. 2021. Recurrent urinary tract infection: a mystery in search of better model systems. Front Cell Infect Microbiol 11:1–29.
Xue J, Zhu P, He Y, Li Q, Xu Y. 2020. Application of computational fluid dynamics models for the evaluation of salivary flow patterns and related bacterial accumulation around orthodontic brackets. Orthod Craniofac Res 23:291–299.
Jurela A, Repic D, Pejda S, Juric H, Vidakovic R, Matic I, Bosnjak A. 2013. The effect of two different bracket types on the salivary levels of S. mutans and S. sobrinus in the early phase of orthodontic treatment. Angle Orthod 83:140–145.
Anhoury P, Nathanson D, Hughes CV, Socransky S, Feres M, Chou LL. 2002. Microbial profile on metallic and ceramic bracket materials. Angle Orthod 72:338–343.
Van kerckhoven M, Hotterbeekx A, Lanckacker E, Moons P, Lammens C, Kerstens M, Ieven M, Delputte P, Jorens PG, Malhotra-Kumar S, Goossens H, Maes L, Cos P. 2016. Characterizing the in vitro biofilm phenotype of Staphylococcus epidermidis isolates from central venous catheters. J Microbiol Methods 127:95–101.
Montgomerie Z, Popat KC. 2021. Improved hemocompatibility and reduced bacterial adhesion on superhydrophobic titania nanoflower surfaces. Mater Sci Eng C 119:111503.
Leslie DC, Waterhouse A, Berthet JB, Valentin TM, Watters AL, Jain A, Kim P, Hatton BD, Nedder A, Donovan K, Super EH, Howell C, Johnson CP, Vu TL, Bolgen DE, Rifai S, Hansen AR, Aizenberg M, Super M, Aizenberg J, Ingber DE. 2014. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat Biotechnol 32:1134–1140.
van Berkel AM, van Marle J, Groen AK, Bruno MJ. 2005. Mechanisms of biliary stent clogging: confocal laser scanning and scanning electron microscopy. Endoscopy 37:729–734.
Rocca DM, Aiassa V, Zoppi A, Silvero Compagnucci J, Becerra MC. 2020. Nanostructured gold coating for prevention of biofilm development in medical devices. J Endourol 34:345–351.
Björling G, Johansson D, Bergström L, Strekalovsky A, Sanchez J, Frostell C, Kalman S. 2018. Evaluation of central venous catheters coated with a noble metal alloy-A randomized clinical pilot study of coating durability, performance, and tolerability. J Biomed Mater Res B Appl Biomater 106:2337–2344.
Stenzelius K, Persson S, Olsson U-B, Stjärneblad M. 2011. Noble metal alloy-coated latex versus silicone Foley catheter in short-term catheterization: a randomized controlled study. Scand J Urol Nephrol 45:258–264.
Hogan S, Kasotakis E, Maher S, Cavanagh B, O’Gara JP, Pandit A, Keyes TE, Devocelle M, O’Neill E. 2019. A novel medical device coating prevents Staphylococcus aureus biofilm formation on medical device surfaces. FEMS Microbiol Lett 366:fnz107.
Sánchez MC, Llama-Palacios A, Fernández E, Figuero E, Marín MJ, León R, Blanc V, Herrera D, Sanz M. 2014. An in vitro biofilm model associated with dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater 30:1161–1171.
Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, Braissant O, Woelfler H, Waltimo T, Kniha H, Gahlert M. 2017. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol 88:298–307.
Atlan M, Kinney BM, Perry TA. 2020. Intra- and inter-shell roughness variability of breast implant surfaces. Aesthetic Surg J 40:NP324–NP326.
James GA, Boegli L, Hancock J, Bowersock L, Parker A, Kinney BM. 2019. Bacterial adhesion and biofilm formation on textured breast implant shell materials. Aesthetic Plast Surg 43:490–497.
Jones P, Mempin M, Hu H, Chowdhury D, Foley M, Cooter R, Adams WP, Jr, Vickery K, Deva AK. 2018. The functional influence of breast implant outer shell morphology on bacterial attachment and growth. Plast Reconstruct Surg 142:837–849.
Lang NP, Berglundh T. 2011. Periimplant diseases: where are we now? Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 38:178–181.
De-la-Pinta I, Cobos M, Ibarretxe J, Montoya E, Eraso E, Guraya T, Quindós G. 2019. Effect of biomaterials hydrophobicity and roughness on biofilm development. J Mater Sci Mater Med 30:1–11.
Jiri M, Duskova R, Hobzova M, Pradny M. 2010. Hydrogel contact lenses. In Ottenbrite R, Park K, Okano T (ed), Biomedical applications of hydrogels handbook. Springer, New York, NY.
Bruinsma GM, van der Mei HC, Busscher HJ. 2001. Bacterial adhesion to surface hydrophilic and hydrophobic contact lenses. Biomaterials 22:3217–3224.
Imamura Y, Chandra J, Mukherjee PK, Lattif AA, Szczotka-Flynn LB, Pearlman E, Lass JH, O’Donnell K, Ghannoum MA. 2008. Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type, and susceptibility to lens care solutions. Antimicrob Agents Chemother 52:171–182.
Lichter JA, Thompson MT, Delgadillo M, Nishikawa T, Rubner MF, Van Vliet KJ. 2008. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 9:1571–1578.
Siddiqui S, Chandrasekaran A, Lin N, Tufenkji N, Moraes C. 2019. Microfluidic shear assay to distinguish between bacterial adhesion and attachment strength on stiffness-tunable silicone substrates. Langmuir 35:8840–8849.
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. 2014. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ Microbiol 16:1961–1981.
Moser C, Pedersen HT, Lerche CJ, Kolpen M, Line L, Thomsen K, Høiby N, Jensen PØ. 2017. Biofilms and host response: helpful or harmful. APMIS 125:320–338.
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. 2021. Immune responses to Pseudomonas aeruginosa biofilm infections. Front Immunol 12:625597.
Turkina MV., Vikström E. 2019. Bacterium-host crosstalk: sensing of the quorum in the context of Pseudomonas aeruginosa infections. J Innate Immun 11:263–279.
Rybtke M, Jensen PØ, Nielsen CH, Tolker-Nielsen T. 2020. The extracellular polysaccharide matrix of Pseudomonas aeruginosa biofilms is a determinant of polymorphonuclear leukocyte responses. Infect Immun 89:e00631-20.
Fuxman Bass JI, Russo DM, Gabelloni ML, Geffner JR, Giordano M, Catalano M, Zorreguieta Á, Trevani AS, Zorreguieta A, Trevani AS. 2010. Extracellular DNA: a major proinflammatory component of Pseudomonas aeruginosa biofilms. J Immunol 184:6386–6395.
Toyofuku M, Roschitzki B, Riedel K, Eberl L. 2012. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 11:4906–4915.
Holban AM, Bleotu C, Chifiriuc MC, Bezirtzoglou E, Lazar V. 2014. Role of Pseudomonas aeruginosa quorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. Virulence 5:303–310.
Schwarzer C, Wong S, Shi J, Matthes E, Illek B, Ianowski JP, Arant RJ, Isacoff E, Vais H, Foskett JK, Maiellaro I, Hofer AM, Machen TE. 2010. Pseudomonas aeruginosa homoserine lactone activates store-operated cAMP and cystic fibrosis transmembrane regulator-dependent Cl secretion by human airway epithelia. J Biol Chem 285:34850–34863.
Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. 2015. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxidants Redox Signal 22:1097–1110.
Rada B, Jendrysik MA, Pang L, Hayes CP, Yoo DG, Park JJ, Moskowitz SM, Malech HL, Leto TL. 2013. Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PLoS One 8:e54205.
Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. 2001. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901.
Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. 2005. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 175:7512–7518.
Ríos-López AL, González GM, Hernández-Bello R, Sánchez-González A. 2021. Avoiding the trap: mechanisms developed by pathogens to escape neutrophil extracellular traps. Microbiol Res 243:126644.
Raffatellu M, Chessa D, Wilson RP, Dusold R, Rubino S, Bäumler AJ. 2005. The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73:3367–3374.
Bylund J, Burgess L-A, Cescutti P, Ernst RK, Speert DP. 2006. Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281:P2526–P2532.
Rieu A, Aoudia N, Jego G, Chluba J, Yousfi N, Briandet R, Deschamps J, Gasquet B, Monedero V, Garrido C, Guzzo J. 2014. The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus. Cell Microbiol 16:1836–1853.
Jones SE, Versalovic J. 2009. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 9:35.
Lin M-H, Yang Y-L, Chen Y-P, Hua K-F, Lu C-P, Sheu F, Lin G-H, Tsay S-S, Liang S-M, Wu S-H. 2011. A novel exopolysaccharide from the biofilm of Thermus aquaticus YT-1 induces the immune response through Toll-like receptor 2. J Biol Chem 286:17736–17745.
de Vor L, Rooijakkers SHM, van Strijp JAG. 2020. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett 594:2556–2569.
Günther F, Wabnitz GH, Stroh P, Prior B, Obst U, Samstag Y, Wagner C, Hänsch GM. 2009. Host defence against Staphylococcus aureus biofilm infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol 46:1805–1813.
Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R. 2008. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197:1028–1035.
Scherr TD, Heim CE, Morrison JM, Kielian T. 2014. Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front Immunol 5:37.
Bhattacharya M, Berends ETM, Chan R, Schwab E, Roy S, Sen CK, Torres VJ, Wozniak DJ. 2018. Staphylococcus aureus biofilms release leukocidins to elicit extracellular trap formation and evade neutrophil-mediated killing. Proc Natl Acad Sci USA 115:7416–7421.
Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. 2004. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275.
Schommer NN, Christner M, Hentschke M, Ruckdeschel K, Aepfelbacher M, Rohde H. 2011. Staphylococcus epidermidis uses distinct mechanisms of biofilm formation to interfere with phagocytosis and activation of mouse macrophage-like cells 774A.1. Infect Immun 79:2267–2276.
Thammavongsa V, Missiakas DM, Schneewind O. 2013. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–866.
Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. 2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586.
Sultan AR, Swierstra JW, den Toom NAL, Snijders Sv., Maňásková SH, Verbon A, van Wamel WJB. 2018. Production of staphylococcal complement inhibitor (SCIN) and other immune modulators during the early stages of Staphylococcus aureus biofilm formation in a mammalian cell culture medium. Infect Immun 86:e00352-18.
Bosch ME, Bertrand BP, Heim CE, Alqarzaee AA, Chaudhari SS, Aldrich AL, Fey PD, Thomas VC, Kielian T. 2020. Staphylococcus aureus ATP synthase promotes biofilm persistence by influencing innate immunity. mBio 11:e01581-20.
Sultan AR, Hoppenbrouwers T, Lemmens-Den Toom NA, Snijders Sv., van Neck JW, Verbon A, de Maat MPM, van Wamel WJB. 2019. During the early stages of staphylococcus aureus biofilm formation, induced neutrophil extracellular traps are degraded by autologous thermonuclease. Infect Immun 87:e00605-19.
Torres VJ, Scherr TD, Hanke ML, Huang O, James DBA, Horswill AR, Bayles KW, Fey PD, Torres VJ, Kielian T. 2015. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin mBio 6:25–27.
Sadowska B, Więckowska-Szakiel M, Paszkiewicz M, Różalska B. 2013. The immunomodulatory activity of staphylococcus aureus products derived from biofilm and planktonic cultures. Arch Immunol Ther Exp 61:413–420.
Gil C, Solano C, Burgui S, Latasa C, García B, Toledo-Arana A, Lasa I, Valle J. 2014. Biofilm matrix exoproteins induce a protective immune response against Staphylococcus aureus biofilm infection. Infect Immun 82:1017–1029.
Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME. 2011. Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79:1789–1796.
Prabhakara R, Harro JM, Leid JG, Keegan AD, Prior ML, Shirtliff ME. 2011. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79:5010–5018.
Nippe N, Varga G, Holzinger D, Löffler B, Medina E, Becker K, Roth J, Ehrchen JM, Sunderkötter C. 2011. Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. J Invest Dermatol 131:125–132.
Thurlow LR, Hanke ML, Fritz T, Angle A, Aldrich A, Williams SH, Engebretsen IL, Bayles KW, Horswill AR, Kielian T. 2011. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596.
Stroh P, Günther F, Meyle E, Prior B, Wagner C, Hänsch GM. 2011. Host defence against Staphylococcus aureus biofilms by polymorphonuclear neutrophils: oxygen radical production but not phagocytosis depends on opsonization with immunoglobulin G. Immunobiology 216:351–357.
Wagner C, Kaksa A, Müller W, Denefleh B, Heppert V, Wentzensen A, Hänsch GM. 2004. Polymorphonuclear neutrophils in posttraumatic osteomyelitis: cells recovered from the inflamed site lack chemotactic activity but generate superoxides. Shock 22:108–115.
Scherr TD, Roux CM, Hanke ML, Angle A, Dunman PM, Kielian T. 2013. Global transcriptome analysis of Staphylococcus aureus biofilms in response to innate immune cells. Infect Immun 81:4363–4376.
Ramos AN, Gobbato N, Rachid M, González L, Yantorno O, Valdez JC. 2010. Effect of Lactobacillus plantarum and Pseudomonas aeruginosa culture supernatants on polymorphonuclear damage and inflammatory response. Int Immunopharmacol 10:247–251.
Vong L, Lorentz RJ, Assa A, Glogauer M, Sherman PM. 2014. Probiotic Lactobacillus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol 192:1870–1877.
Anderson JM, Rodriguez A, Chang DT. 2008. Foreign body reaction to biomaterials. Semin Immunol 20:86–100.
Sheikh Z, Brooks PJ, Barzilay O, Fine N, Glogauer M. 2015. Macrophages, foreign body giant cells, and their response to implantable biomaterials. Materials 8:5671–5701.
Frazão LP, Vieira de Castro J, Neves NM. 2020. In vivo evaluation of the biocompatibility of biomaterial device. Adv Exp Med Biol 1250:109–124.
Saleh LS, Bryant SJ. 2017. In vitro and in vivo models for assessing the host response to biomaterials. Drug Discov Today Dis Models 24:13–21.
Doloff JC, Veiseh O, de Mezerville R, Sforza M, Perry TA, Haupt J, Jamiel M, Chambers C, Nash A, Aghlara-Fotovat S, Stelzel JL, Bauer SJ, Neshat SY, Hancock J, Romero NA, Hidalgo YE, Leiva IM, Munhoz AM, Bayat A, Kinney BM, Hodges HC, Miranda RN, Clemens MW, Langer R. 2021. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat Biomed Eng
Hanke ML, Heim CE, Angle A, Sanderson SD, Kielian T. 2013. Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J Immunol 190:2159–2168.
Bernthal NM, Pribaz JR, Stavrakis AI, Billi F, Cho JS, Ramos RI, Francis KP, Iwakura Y, Miller LS. 2011. Protective role of IL-1β against post-arthroplasty Staphylococcus aureus infection. J Orthop Res 29:1621–1626.
Mendiratta P, Tilford JM, Prodhan P, Curseen K, Azhar G, Wei JY. 2012. Trends in percutaneous endoscopic gastrostomy placement in the elderly from 1993 to 2003. Am J Alzheimers Dis Other Dementias 27:609–613.
Darouiche RO, Bella AJ, Boone TB, Brock G, Broderick GA, Burnett AL, Carrion R, Carson C, Christine B, Dhabuwala CB, Hakim LS, Henry G, Jones LA, Khera M, Montague DK, Nehra A. 2013. North American consensus document on infection of penile prostheses. Urology 82:937–942.
Ambrosioni J, Martinez-Garcia C, Llopis J, Garcia-de-la-Maria C, Hernández-Meneses M, Tellez A, Falces C, Almela M, Vidal B, Sandoval E, Fuster D, Quintana E, Tolosana JM, Marco F, Moreno A, Miró JM. 2018. HACEK infective endocarditis: epidemiology, clinical features, and outcome: a case–control study. Int J Infect Dis 76:120–125.
Oliva A, Mascellino M, Nguyen B, De Angelis M, Cipolla A, Di Berardino A, Ciccaglioni A, Mastroianni CM, Vullo V. 2018. Detection of biofilm-associated implant pathogens in cardiac device infections: high sensitivity of sonication fluid culture even in the presence of antimicrobials. J Global Infect Dis 10:74–79.
Sendi P, Wustmann K, Büchi AE, Noti F, Klaeser B, Sonderegger B, Der Maur CA, Mercier T, Schwerzmann M, Ruppen C. 2019. Cardiac implantable electronic device-related infection due to granulicatella adiacens. Open Forum Infect Dis 6.
Maille B, Koutbi L, Resseguier N, Lemoine C, Thuny F, Peyrol M, Hourdain J, Deharo JC, Franceschi F. 2019. Seasonal variations in cardiac implantable electronic device infections. Heart Vessels 34:824–831.
Zhu J, Yang Q, Pan J, Shi H, Jin B, Chen Q. 2019. Cardiac resynchronization therapy-defibrillator pocket infection caused by Mycobacterium fortuitum: a case report and review of the literature. BMC Cardiovasc Disord 19:53.
Del Pozo JL, Tran NV, Petty PM, Johnson CH, Walsh MF, Bite U, Clay RP, Mandrekar JN, Piper KE, Steckelberg JM, Patel R. 2009. Pilot study of association of bacteria on breast implants with capsular contracture. J Clin Microbiol 47:1333–1337.
Macadam SA, Mehling BM, Fanning A, Dufton JA, Kowalewska-Grochowska KT, Lennox P, Anzarut A, Rodrigues M. 2007. Nontuberculous mycobacterial breast implant infections. Plast Reconstruct Surg 119:337–344.
Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY, Jacobson LM, Crowell CS, Sneed RS, Lewis FMT, Schaffzin JK, Kainer MA, Genese CA, Alfonso EC, Jones DB, Srinivasan A, Fridkin SK, Park BJ, Fusarium Keratitis Investigation Team. 2006. Multistate outbreak of fusarium keratitis associated with use of a contact lens solution. JAMA 296:953.
Keay L, Stapleton F, Schein O. 2007. Epidemiology of contact lens-related inflammation and microbial keratitis: a 20-year perspective. Eye Contact Lens 33:346–53 (Discussion 33:362–363.)
Jin Q, Zhang X, Li X, Wang J. 2010. Dynamics analysis of bladder-urethra system based on CFD. Front Mech Eng China 5:336–340.
Vahidi B, Fatouraee N, Imanparast A, Moghadam AN. 2010. A mathematical simulation of the ureter: effects of the model parameters on ureteral pressure/flow relations. J Biomech Eng 133:e031004.
Sebastian B, Dittrich PS. 2018. Microfluidics to mimic blood flow in health and disease. Annu Rev Fluid Mech 50:483–504.
Secomb TW. 2017. Blood flow in the microcirculation. Annu Rev Fluid Mech 49:443–461.
Dawes C. 2008. Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc 139:18S–24S.
Ooi RC, Luo XY, Chin SB, Johnson AG, Bird NC. 2004. The flow of bile in the human cystic duct. J Biomech 37:1913–1922.
Li WG, Luo XY, Chin SB, Hill NA, Johnson AG, Bird NC. 2008. Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling. Ann Biomed Eng 36:1893–1908.
Matsui H, Randell SH, Peretti SW, Davis CW, Boucher RC. 1998. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J Clin Invest 102:1125–1131.
Janott M, Gayler S, Gessler A, Javaux M, Klier C, Priesack E, Brodersen CR, Choat B, Chatelet DS, Shackel K, Matthews M, McElrone AJ, The Mendeley Support Team, Feil H, Purcell AH, Biology I, Lieth JH, Meyer MM, Yeo K, Kirkpatrick BC, Meng Y, Li Y, Galvani CD, Hao G, Turner N, Burr TJ, Hoch HC, Turner JN, Pérez-Donoso AG, Greve LC, Walton JH, Labavitch JM, Sun Q, Roper MC, Wistrom CM, Rost TL, Feil WS. 2011. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. Plant Physiol 108:1748–1759.
Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME. 2006. Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426.
Graveline R, Segura M, Radzioch D, Gottschalk M. 2007. TLR2-dependent recognition of Streptococcus suis is modulated by the presence of capsular polysaccharide which modifies macrophage responsiveness. Int Immunol 19:375–389.
Cerca N, Jefferson KK, Oliveira R, Pier GB, Azeredo J. 2006. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74:4849–4855.
Mulcahy H, Charron-Mazenod L, Lewenza S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4:e1000213.
Smith RS, Fedyk ER, Springer TA, Mukaida N, Iglewski BH, Phipps RP. 2001. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-κB and activator protein-2. J Immunol 167:366–374.
Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K. 2003. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793.
Shiner EK, Terentyev D, Bryan A, Sennoune S, Martinez-zaguilan R, Li G, Gyorke S, Williams SC, Rumbaugh KP. 2006. Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signaling. Cell Microbiol 8:1601–1610.
Li H, Wang L, Ye L, Mao Y, Xie X, Xia C, Chen J, Lu Z, Song J. 2009. Influence of Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone on mast cells. Med Microbiol Immunol 198:113–121.
Das T, Manefield M. 2012. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7:e46718.
Das T, Kutty SK, Kumar N, Manefield M. 2013. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8:e58299.
Lau GW, Hassett DJ, Ran H, Kong F. 2004. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med 10:599–606.
Fothergill JL, Panagea S, Hart CA, Walshaw MJ, Pitt TL, Winstanley C. 2007. Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiology 7:1–10.
Lögters T, Margraf S, Altrichter J, Cinatl J, Mitzner S, Windolf J, Scholz M. 2009. The clinical value of neutrophil extracellular traps. Med Microbiol Immunol 198:211–219.

Author Bios

Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
Marina Caldara, Ph.D., is currently a senior researcher at the University of Parma and collaborates with SITEIA.PARMA. She studied Industrial Biotechnology in Milan-Bicocca and received her doctoral degree in Bioscience Engineering in 2007 at the VU Brussel. From 2007 to 2008 she worked as a postdoctoral fellow with Professor Kevin Verstrepen studying tandem repeats regions of yeast DNA at the FAS Center for Systems Biology at Harvard University and from 2008 to 2011 with Professor Katharina Ribbeck in the Department of Biological Engineering at the Massachusetts Institute of Technology, working on the properties of P. aeruginosa biofilm within a reconstituted mucus layer. From 2011 to 2012, she was a FWO (Flanders Research Foundation) fellow at KU Leuven (Belgium). Since 2014, she has worked at the University of Parma. Her current research focuses on drug repositioning and on understanding the properties of biofilms grown in nature and possibly their exploitation.
IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
Cristina Belgiovine, Ph.D., is a postdoctoral researcher at Humanitas Research Hospital and a student in the Postgraduate School of Microbiology and Virology at Università degli Studi di Pavia. She graduated in Applied Biology and earned a Ph.D. in Genetics and Molecular Biology from the Università degli studi di Pavia. In 2011, she moved to the laboratory of Cellular Immunology of Professor Paola Allavena at the Humanitas Clinical and Research Institute in Milan. She has worked on strategies for targeting tumor-associated macrophages (TAMs), investigating the mechanism of action of drugs used for chemotherapy on TME. She has obtained an AIRC fellowship (2013-2015) and a Veronesi fellowship (2017-2018). More recently, she is investigating the role of soluble proteins produced by macrophages in tumors and in periprosthetic fluids of hip and knee prosthesis and breast implants, focusing on the interplay between immune system, bacterial biofilms, and surface topography.
Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
Eleonora Secchi, Ph.D., is the Principal Investigator of the bioMatter Microfluidics Group in the Institute of Environmental Engineering at ETH Zurich. She earned a B.A. in Physical Engineering, a M.S. in Nuclear Engineering, and a Ph.D. in Chemical Engineering and Industrial Chemistry from the Polytechnic University of Milan. From 2014 to 2016, she has been a postdoctoral fellow in the Laboratoire de Physique Statistique directed by Professor Lyderic Bocquet at Ecole Normale Supérieure. From 2016 to 2018, she was awarded an ETH Postdoctoral Fellowship to work in the laboratory of Professor Roman Stocker in the Department of Civil, Environmental, and Geomatic Engineering at ETH Zurich. Her current research focuses on understanding the physical mechanisms influencing bacterial surface colonization and biofilm formation in fluids and their implications in environmental processes. Her experimental approach relies on an innovative combination of experimental techniques, mainly based on microfluidics and advanced optical visualization techniques.
IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy
Roberto Rusconi, Ph.D., is Associate Professor of Applied Physics in the Department of Biomedical Sciences at Humanitas University and Principal Investigator at Humanitas Research Hospital. He earned an M.S. in Nuclear Engineering and a Ph.D. in Radiation Science and Technology from the Polytechnic University of Milan. His graduate research work investigated out-of-equilibrium effects in colloidal dispersions. From 2007 to 2010, he has been a postdoctoral fellow in the group of Professor Howard Stone in the School of Engineering and Applied Sciences at Harvard University and from 2010 to 2015 in the group of Professor Roman Stocker in the Department of Civil and Environmental Engineering at MIT. From 2016 to 2017, he was a Research Scientist at ETH Zurich. By combining microfluidics and mathematical modeling, his research aims to identify fundamental aspects of bacterial transport and biofilm formation in response to the environment, including fluid mechanical forces and chemical gradients.

Information & Contributors


Published In

cover image Clinical Microbiology Reviews
Clinical Microbiology Reviews
Volume 35Number 220 April 2022
eLocator: e00221-20
PubMed: 35044203


Published online: 19 January 2022


Request permissions for this article.


  1. biofilms
  2. fluid flow
  3. immune response
  4. medical implants
  5. microbial contamination



Interdepartmental Center on Safety, Technologies, and Agri-food Innovation (SITEIA.PARMA), University of Parma, Parma, Italy
IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
Scuola di Specializzazione in Microbiologia e Virologia, Università degli Studi di Pavia, Pavia, Italy
Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
IRCCS Humanitas Research Hospital, Rozzano–Milan, Italy
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele–Milan, Italy


The authors declare no conflict of interest.

Metrics & Citations


Note: There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.

Citation counts come from the Crossref Cited by service.


If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Non-Member Login
Buy Article
Clinical Microbiology Reviews Vol.35 • Issue 2 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Clinical Microbiology Reviews
ASM members can purchase subscriptions to journals.
Join or renew

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options



Full Text

Full Text

Figures and Media






Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy