Bacteriophages
Minireview
30 September 2024

Challenges and opportunities of phage therapy for Klebsiella pneumoniae infections

ABSTRACT

Traditional antibiotics have been effective in many cases. However, the rise in multidrug-resistant bacteria has diminished their therapeutic efficacy, signaling the dawn of an era beyond antibiotics. The challenge of multidrug resistance in Klebsiella pneumoniae is particularly critical, with increasing global mortality and resistance rates. Therefore, the development of alternative therapies to antibiotics is urgently needed. Phages, which are natural predators of bacteria, have inherent advantages. However, comprehensive information on K. pneumoniae phages is lacking in current literature. This review aims to analyze and summarize relevant studies, focusing on the present state of phage therapy for K. pneumoniae infections. This includes an examination of treatment methodologies, associated challenges, strategies, new phage technologies, clinical trial safety and efficacy, regulatory issues, and future directions for phage therapy development. Enhancing phage technology is crucial for addressing the evolving threat of multidrug-resistant K. pneumoniae.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES

1.
Guentzel MN. 1996. Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter, and Proteus. In Baron S (ed), Medical microbiology, 4th ed. University of Texas Medical Branch at Galveston, Galveston (TX).
2.
Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603.
3.
Friedlaender C. 1882. Ueber die Schizomyceten bei der acuten fibrösen Pneumonie. Arch Für Pathol Anat Physiol Für Klin Med 87.
4.
Paczosa MK, Mecsas J. 2016. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 80:629–661.
5.
Russo TA, Marr CM. 2019. Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 32:e00001–19.
6.
WHO publishes list of bacteria for which new antibiotics are urgently needed. 2023. Available from: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
7.
Tan D, Zhang Y, Cheng M, Le S, Gu J, Bao J, Qin J, Guo X, Zhu T. 2019. Characterization of Klebsiella pneumoniae ST11 isolates and their interactions with lytic phages. Viruses 11:1080.
8.
Wang L, Yuan X-D, Pang T, Duan S-H. 2022. The risk factors of carbapenem-resistant Klebsiella pneumoniae infection: a single-center chinese retrospective study. Infect Drug Resist 15:1477–1485.
9.
De La Cadena E, Mojica MF, García-Betancur JC, Appel TM, Porras J, Pallares CJ, Solano-Gutiérrez JS, Rojas LJ, Villegas MV. 2021. Molecular analysis of polymyxin resistance among carbapenemase-producing Klebsiella pneumoniae in Colombia. Antibiotics (Basel) 10:284.
10.
Pei N, Sun W, He J, Li Y, Chen X, Liang T, Kristiansen K, Liu W, Li J. 2022. Genome-wide association study of Klebsiella pneumoniae identifies variations linked to carbapenems resistance. Front Microbiol 13:997769.
11.
Agyeman AA, Bergen PJ, Rao GG, Nation RL, Landersdorfer CB. 2020. A systematic review and meta-analysis of treatment outcomes following antibiotic therapy among patients with carbapenem-resistant Klebsiella pneumoniae infections. Int J Antimicrob Agents 55:105833.
12.
Giannella M, Bartoletti M, Conti M, Righi E. 2021. Carbapenemase-producing Enterobacteriaceae in transplant patients. J Antimicrob Chemother 76:i27–i39.
13.
Twort FW. 1936. Further investigations on the nature of ultra-microscopic viruses and their cultivation. J Hyg (Lond) 36:204–235.
14.
Hendrix RW. 2002. Bacteriophages: evolution of the majority. Theor Popul Biol 61:471–480.
15.
Summers WC. 2012. The strange history of phage therapy. Bacteriophage 2:130–133.
16.
Thiry D, Passet V, Danis-Wlodarczyk K, Lood C, Wagemans J, De Sordi L, van Noort V, Dufour N, Debarbieux L, Mainil JG, Brisse S, Lavigne R. 2019. New bacteriophages against emerging lineages ST23 and ST258 of Klebsiella pneumoniae and efficacy assessment in Galleria mellonella larvae. Viruses 11:411.
17.
Principi N, Silvestri E, Esposito S. 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol 10:513.
18.
Liu D, Van Belleghem JD, de Vries CR, Burgener E, Chen Q, Manasherob R, Aronson JR, Amanatullah DF, Tamma PD, Suh GA. 2021. The safety and toxicity of phage therapy: a review of animal and clinical studies. Viruses 13:1268.
19.
Cano EJ, Caflisch KM, Bollyky PL, Van Belleghem JD, Patel R, Fackler J, Brownstein MJ, Horne B, Biswas B, Henry M, Malagon F, Lewallen DG, Suh GA. 2021. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin Infect Dis 73:e144–e151.
20.
Ichikawa M, Nakamoto N, Kredo-Russo S, Weinstock E, Weiner IN, Khabra E, Ben-Ishai N, Inbar D, Kowalsman N, Mordoch R, et al. 2023. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nat Commun 14:3261.
21.
Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L, Gabard J. 2019. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19:35–45.
22.
Hesse S, Malachowa N, Porter AR, Freedman B, Kobayashi SD, Gardner DJ, Scott DP, Adhya S, DeLeo FR. 2021. Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258. MBio 12:e00034-21.
23.
Davido B, Crémieux A-C, Vaugier I, Gatin L, Noussair L, Massias L, Laurent F, Saleh-Mghir A. 2023. Efficacy of ceftazidime-avibactam in various combinations for the treatment of experimental osteomyelitis due to Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae. Int J Antimicrob Agents 61:106702.
24.
Zhang F, Li Q, Bai J, Ding M, Yan X, Wang G, Zhu B, Zhou Y. 2021. Heteroresistance to amikacin in carbapenem-resistant Klebsiella pneumoniae strains. Front Microbiol 12.
25.
Pirnay J-P, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, Glonti T, Spiessens A, Vanden Berghe E, Green S, et al. 2024. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 9:1434–1453.
26.
Fedorov E, Samokhin A, Kozlova Y, Kretien S, Sheraliev T, Morozova V, Tikunova N, Kiselev A, Pavlov V. 2023. Short-term outcomes of phage-antibiotic combination treatment in adult patients with periprosthetic hip joint infection. Viruses 15:499.
27.
Bulssico J, PapukashvilI I, Espinosa L, Gandon S, Ansaldi M. 2023. Phage-antibiotic synergy: cell filamentation is a key driver of successful phage predation. PLoS Pathog 19:e1011602.
28.
Nang SC, Lu J, Yu HH, Wickremasinghe H, Azad MAK, Han M, Zhao J, Rao G, Bergen PJ, Velkov T, Sherry N, McCarthy DT, Aslam S, Schooley RT, Howden BP, Barr JJ, Zhu Y, Li J. 2024. Phage resistance in Klebsiella pneumoniae and bidirectional effects impacting antibiotic susceptibility. Clin Microbiol Infect 30:787–794.
29.
Ashworth EA, Wright RCT, Shears RK, Wong JKL, Hassan A, Hall JPJ, Kadioglu A, Fothergill JL. 2024. Exploiting lung adaptation and phage steering to clear pan-resistant Pseudomonas aeruginosa infections in vivo. Nat Commun 15:1547.
30.
Euler CW, Raz A, Hernandez A, Serrano A, Xu S, Andersson M, Zou G, Zhang Y, Fischetti VA, Li J. 2023. PlyKp104, a novel phage lysin for the treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and other Gram-negative ESKAPE pathogens. Antimicrob Agents Chemother 67:e0151922.
31.
13 critical interventions that support countries to address antimicrobial resistance in human health. 2023. World Health Organization. Available from: https://www.who.int/news/item/19-10-2023-13-critical-interventions-that-support-countries-to-address-antimicrobial-resistance-in-human-health
32.
Corbellino M, Kieffer N, Kutateladze M, Balarjishvili N, Leshkasheli L, Askilashvili L, Tsertsvadze G, Rimoldi SG, Nizharadze D, Hoyle N, Nadareishvili L, Antinori S, Pagani C, Scorza DG, Romanò ALL, Ardizzone S, Danelli P, Gismondo MR, Galli M, Nordmann P, Poirel L. 2020. Eradication of a multidrug-resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation. Clin Infect Dis 70:1998–2001.
33.
Rahimi S, Bakht M, Javadi A, Foroughi F, Marashi SMA, Nikkhahi F. 2023. Characterization of novel bacteriophage PSKP16 and its therapeutic potential against β-lactamase and biofilm producer strain of K2-Hypervirulent Klebsiella pneumoniae pneumonia infection in mice model. BMC Microbiol 23:233.
34.
Zurabov F, Glazunov E, Kochetova T, Uskevich V, Popova V. 2023. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms. Sci Rep 13:15188.
35.
Soontarach R, Srimanote P, Voravuthikunchai SP, Chusri S. 2024. Antibacterial and anti-biofilm efficacy of endolysin LysAB1245 against a panel of important pathogens. Pharmaceuticals (Basel) 17:155.
36.
Rostøl JT, Marraffini L. 2019. (Ph)ighting phages: how bacteria resist their parasites. Cell Host Microbe 25:184–194.
37.
Bernheim A, Sorek R. 2020. The pan-immune system of bacteria: antiviral defence as a community resource. Nat Rev Microbiol 18:113–119.
38.
Vassallo CN, Doering CR, Littlehale ML, Teodoro GIC, Laub MT. 2022. A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome. Nat Microbiol 7:1568–1579.
39.
Gordillo Altamirano FL, Barr JJ. 2021. Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol 68:115–123.
40.
Tan D, Zhang Y, Qin J, Le S, Gu J, Chen L, Guo X, Zhu T. 2020. A frameshift mutation in wcaJ associated with phage resistance in Klebsiella pneumoniae. Microorganisms 8:378.
41.
Bull JJ, Vegge CS, Schmerer M, Chaudhry WN, Levin BR. 2014. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS One 9:e94690.
42.
Nwodo UU, Green E, Okoh AI. 2012. Bacterial exopolysaccharides: functionality and prospects. IJMS 13:14002–14015.
43.
Ferriol-González C, Domingo-Calap P. 2020. Phages for biofilm removal. Antibiotics (Basel) 9:268.
44.
Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, Charpentier E, Cheng D, Haft DH, Horvath P, et al. 2020. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83.
45.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.
46.
Rusinov IS, Ershova AS, Karyagina AS, Spirin SA, Alexeevski AV. 2018. Avoidance of recognition sites of restriction-modification systems is a widespread but not universal anti-restriction strategy of prokaryotic viruses. BMC Genomics 19:885.
47.
Lopatina A, Tal N, Sorek R. 2020. Abortive infection: bacterial suicide as an antiviral immune strategy. Annu Rev Virol 7:371–384.
48.
Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R. 2019. Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature New Biol 574:691–695.
49.
Huiting E, Cao X, Ren J, Athukoralage JS, Luo Z, Silas S, An N, Carion H, Zhou Y, Fraser JS, Feng Y, Bondy-Denomy J. 2023. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 186:864–876.
50.
Jenson JM, Li T, Du F, Ea C-K, Chen ZJ. 2023. Ubiquitin-like conjugation by bacterial cGAS enhances anti-phage defence. Nature New Biol 616:326–331.
51.
Augustyniak D, Olszak T, Drulis-Kawa Z. 2022. Outer membrane vesicles (OMVs) of Pseudomonas aeruginosa provide passive resistance but not sensitization to LPS-specific phages. Viruses 14:121.
52.
Wu S, Liu J, Liu C, Yang A, Qiao J. 2020. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell Mol Life Sci 77:1319–1343.
53.
Slater RT, Frost LR, Jossi SE, Millard AD, Unnikrishnan M. 2019. Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Sci Rep 9:9903.
54.
Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. 2012. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335:428–432.
55.
Hampton HG, Watson BNJ, Fineran PC. 2020. The arms race between bacteria and their phage foes. Nature New Biol 577:327–336.
56.
Birkholz N, Fineran PC. 2022. Turning down the (C)BASS: phage-encoded inhibitors jam bacterial immune signaling. Mol Cell 82:2185–2187.
57.
Hobbs SJ, Wein T, Lu A, Morehouse BR, Schnabel J, Leavitt A, Yirmiya E, Sorek R, Kranzusch PJ. 2022. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity. Nature New Biol 605:522–526.
58.
Mendoza SD, Nieweglowska ES, Govindarajan S, Leon LM, Berry JD, Tiwari A, Chaikeeratisak V, Pogliano J, Agard DA, Bondy-Denomy J. 2020. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature New Biol 577:244–248.
59.
Cohan FM, Zandi M, Turner PE. 2020. Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Virus Evol 6:veaa060.
60.
Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L. 2011. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6:e16963.
61.
Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. 2021. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci U S A 118:e2104592118.
62.
Beamud B, García-González N, Gómez-Ortega M, González-Candelas F, Domingo-Calap P, Sanjuan R. 2023. Genetic determinants of host tropism in Klebsiella phages. Cell Rep 42:112048.
63.
Gordillo Altamirano FL, Barr JJ. 2019. Phage therapy in the postantibiotic era. Clin Microbiol Rev 32:e00066-18.
64.
Yang Y, Shen W, Zhong Q, Chen Q, He X, Baker JL, Xiong K, Jin X, Wang J, Hu F, Le S. 2020. Development of a bacteriophage cocktail to constrain the emergence of phage-resistant Pseudomonas aeruginosa. Front Microbiol 11:327.
65.
Faltus T. 2024. The medicinal phage-regulatory roadmap for phage therapy under EU pharmaceutical legislation. Viruses 16:443.
66.
Parracho HM, Burrowes BH, Enright MC, McConville ML, Harper DR. 2012. The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med 06:279–286.
67.
Pirnay J-P, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, Fauconnier A. 2018. The magistral phage. Viruses 10:64.
68.
Onsea J, Uyttebroek S, Chen B, Wagemans J, Lood C, Van Gerven L, Spriet I, Devolder D, Debaveye Y, Depypere M, Dupont L, De Munter P, Peetermans WE, van Noort V, Merabishvili M, Pirnay J-P, Lavigne R, Metsemakers W-J. 2021. Bacteriophage therapy for difficult-to-treat infections: the implementation of a multidisciplinary phage task force (The PHAGEFORCE study protocol). Viruses 13:1543.
69.
Scheepers HPA, Neerup Handlos V, Walser S, Schutjens MDB, Neef C. 2017. Impact of the council of Europe resolution on quality and safety assurance requirements for medicinal products prepared in pharmacies for the special needs of patients. Eur J Hosp Pharm 24:218–223.
70.
Scheepers HP, Langedijk J, Neerup Handlos V, Walser S, Schutjens MH, Neef C. 2017. Legislation on the preparation of medicinal products in European pharmacies and the council of Europe resolution. Eur J Hosp Pharm 24:224–229.
71.
Gibson SB, Green SI, Liu CG, Salazar KC, Clark JR, Terwilliger AL, Kaplan HB, Maresso AW, Trautner BW, Ramig RF. 2019. Constructing and characterizing bacteriophage libraries for phage therapy of human infections. Front Microbiol 10:2537.
72.
Bretaudeau L, Tremblais K, Aubrit F, Meichenin M, Arnaud I. 2020. Good manufacturing practice (GMP) compliance for phage therapy medicinal products. Front Microbiol 11:1161.
73.
Verbeken G, Pirnay J-P, De Vos D, Jennes S, Zizi M, Lavigne R, Casteels M, Huys I. 2012. Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp (Warsz) 60:161–172.
74.
Pirnay J-P, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Zizi M, Laire G, Lavigne R, Huys I, Van den Mooter G, Buckling A, Debarbieux L, Pouillot F, Azeredo J, Kutter E, Dublanchet A, Górski A, Adamia R. 2011. The phage therapy paradigm: prêt-à-porter or sur-mesure? Pharm Res 28:934–937.
75.
Anderson M, Panteli D, van Kessel R, Ljungqvist G, Colombo F, Mossialos E. 2023. Challenges and opportunities for incentivising antibiotic research and development in Europe. Lancet Reg Health Eur 33:100705.
76.
Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, Chan BK, Cunningham SA, Goodman KE, Greenwood-Quaintance KE, Harris AD, Hesse S, Maresso A, Nussenblatt V, Pride D, Rybak MJ, Sund Z, van Duin D, Van Tyne D, Patel R, for the Antibacterial Resistance Leadership Group. 2022. Considerations for the use of phage therapy in clinical practice. Antimicrob Agents Chemother 66:e02071–21.
77.
Onsea J, Soentjens P, Djebara S, Merabishvili M, Depypere M, Spriet I, De Munter P, Debaveye Y, Nijs S, Vanderschot P, Wagemans J, Pirnay J-P, Lavigne R, Metsemakers W-J. 2019. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses 11:891.
78.
O’Sullivan L, Buttimer C, McAuliffe O, Bolton D, Coffey A. 2016. Bacteriophage-based tools: recent advances and novel applications. F1000Res 5:2782.
79.
Exarchos V, Tkhilaishvili T, Potapov E, Starck C, Trampuz A, Schoenrath F. 2020. Successful bacteriophage treatment of infection involving cardiac implantable electronic device and aortic graft: a Trojan horse concept. EP Europace 22:597–597.
80.
Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT. 2020. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect Dis 7:faa389.
81.
Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Vreugde S, Psaltis AJ, Wormald P-J. 2019. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol Head Neck Surg 145:723–729.
82.
Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S, Chkhotua A, Changashvili G, McCallin S, Schneider MP, Liechti MD, Mehnert U, Bachmann LM, Sybesma W, Kessler TM. 2021. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis 21:427–436.
83.
Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733.
84.
Dedrick RM, Freeman KG, Nguyen JA, Bahadirli-Talbott A, Smith BE, Wu AE, Ong AS, Lin CT, Ruppel LC, Parrish NM, Hatfull GF, Cohen KA. 2021. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat Med 27:1357–1361.
85.
Liu H, Li H, Liang Y, Du X, Yang C, Yang L, Xie J, Zhao R, Tong Y, Qiu S, Song H. 2020. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria. Theranostics 10:6310–6321.
86.
Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, Rourke AS, Seo KS, Olivier AK, Priddy LB. 2019. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS One 14:e0220421.
87.
Nick JA, Dedrick RM, Gray AL, Vladar EK, Smith BE, Freeman KG, Malcolm KC, Epperson LE, Hasan NA, Hendrix J, et al. 2022. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell 185:1860–1874.
88.
Eskenazi A, Lood C, Wubbolts J, Hites M, Balarjishvili N, Leshkasheli L, Askilashvili L, Kvachadze L, van Noort V, Wagemans J, Jayankura M, Chanishvili N, de Boer M, Nibbering P, Kutateladze M, Lavigne R, Merabishvili M, Pirnay J-P. 2022. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nat Commun 13:302.
89.
Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202.
90.
Yehl K, Lemire S, Yang AC, Ando H, Mimee M, Torres MDT, de la Fuente-Nunez C, Lu TK. 2019. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis. Cell 179:459–469.
91.
Kiga K, Tan X-E, Ibarra-Chávez R, Watanabe S, Aiba Y, Sato’o Y, Li F-Y, Sasahara T, Cui B, Kawauchi M, Boonsiri T, Thitiananpakorn K, Taki Y, Azam AH, Suzuki M, Penadés JR, Cui L. 2020. Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. Nat Commun 11:2934.
92.
Hsu BB, Way JC, Silver PA. 2020. Stable neutralization of a virulence factor in bacteria using temperate phage in the mammalian gut. mSystems 5:e00013-20.
93.
Selle K, Fletcher JR, Tuson H, Schmitt DS, McMillan L, Vridhambal GS, Rivera AJ, Montgomery SA, Fortier L-C, Barrangou R, Theriot CM, Ousterout DG. 2020. In vivo targeting of Clostridioides difficile using phage-delivered CRISPR-Cas3 antimicrobials. MBio 11:e00019-20.
94.
Fang Q, Feng Y, McNally A, Zong Z. 2022. Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice. Commun Biol 5:48.
95.
Le T, Nang SC, Zhao J, Yu HH, Li J, Gill JJ, Liu M, Aslam S. 2023. Therapeutic potential of intravenous phage as standalone therapy for recurrent drug-resistant urinary tract infections. Antimicrob Agents Chemother 67:e0003723.
96.
Kuipers S, Ruth MM, Mientjes M, de Sévaux RGL, van Ingen J. 2019. A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient. Antimicrob Agents Chemother 64:e01281-19.
97.
Rubalskii E, Ruemke S, Salmoukas C, Boyle EC, Warnecke G, Tudorache I, Shrestha M, Schmitto JD, Martens A, Rojas SV, Ziesing S, Bochkareva S, Kuehn C, Haverich A. 2020. Bacteriophage therapy for critical infections related to cardiothoracic surgery. Antibiotics (Basel) 9:232.
98.
Glonti T, Pirnay J-P. 2022. In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses 14:1490.
99.
Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S. 2012. Development of a high throughput assay for indirectly measuring phage growth using the OmniLog system. Bacteriophage 2:159–167.
100.
Dąbrowska K, Abedon ST. 2019. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012-19.
101.
Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O. 2016. Modular approach to select bacteriophages targeting Pseudomonas aeruginosa for their application to children suffering with cystic fibrosis. Front Microbiol 7:1631.
102.
Pirnay J-P, Verbeken G. 2023. Magistral phage preparations: is this the model for everyone? Clin Infect Dis 77:S360–S369.
103.
Li P, Guo G, Zheng X, Xu S, Zhou Y, Qin X, Hu Z, Yu Y, Tan Z, Ma J, Chen L, Zhang W. 2024. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection. Vet Res 55:59.
104.
Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, Pirnay J-P, Merabishvili M, De Munter P, Peetermans WE, Dupont L, Van Gerven L, Metsemakers W-J. 2022. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis 22:e208–e220.
105.
Christ W, Esch B. 1991. Use-risk consideration of anti-infective agents from the point of view of the licensing authority. Infection 19 Suppl 1:S65–71.
106.
Gan L, Feng Y, Du B, Fu H, Tian Z, Xue G, Yan C, Cui X, Zhang R, Cui J, Zhao H, Feng J, Xu Z, Fan Z, Fu T, Du S, Liu S, Zhang Q, Yu Z, Sun Y, Yuan J. 2023. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae. Nat Commun 14:3215.
107.
Ferreira R, Sousa C, Gonçalves RFS, Pinheiro AC, Oleastro M, Wagemans J, Lavigne R, Figueiredo C, Azeredo J, Melo LDR. 2022. Characterization and genomic analysis of a new phage infecting Helicobacter pylori. Int J Mol Sci 23:7885.
108.
Lei L, Yan J, Xin K, Li L, Sun Q, Wang Y, Chen T, Wu S, Shao J, Liu B, Chen X. 2024. Engineered bacteriophage-based in situ vaccine remodels a tumor microenvironment and elicits potent antitumor immunity. ACS Nano 18:12194–12209.
109.
Meile S, Sarbach A, Du J, Schuppler M, Saez C, Loessner MJ, Kilcher S. 2020. Engineered reporter phages for rapid bioluminescence-based detection and differentiation of viable Listeria cells. Appl Environ Microbiol 86:e00442-20.
110.
Abd-El Wahab A, Basiouni S, El-Seedi HR, Ahmed MFE, Bielke LR, Hargis B, Tellez-Isaias G, Eisenreich W, Lehnherr H, Kittler S, Shehata AA, Visscher C. 2023. An overview of the use of bacteriophages in the poultry industry: successes, challenges, and possibilities for overcoming breakdowns. Front Microbiol 14:1136638.
111.
Pereira AO, Barros NMA, Guerrero BR, Emencheta SC, Baldo DÂ, Oliveira Jr. JM, Vila MMDC, Balcão VM. 2023. An edible biopolymeric microcapsular wrapping integrating lytic bacteriophage particles for Salmonella enterica: potential for integration into poultry feed. Antibiotics (Basel) 12:988.
112.
Lyu S, Xiong F, Qi T, Shen W, Guo Q, Han M, Liu L, Bu W, Yuan J, Lou B. 2024. Isolation and characterization of a novel temperate bacteriophage infecting Aeromonas hydrophila isolated from a Macrobrachium rosenbergii larvae pond. Virus Res 339:199279.
113.
Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. 2022. Phage products for fighting antimicrobial resistance. Microorganisms 10:1324.
114.
Das M, Bhowmick TS, Ahern SJ, Young R, Gonzalez CF. 2015. Control of pierce’s disease by phage. PLoS One 10:e0128902.
115.
Reisoglu Ş, Aydin S. 2023. Bacteriophages as a promising approach for the biocontrol of antibiotic resistant pathogens and the reconstruction of microbial interaction networks in wastewater treatment systems: a review. Sci Total Environ 890:164291.
116.
El-Meihy RM, Hassan EO, Alamoudi SA, Negm S, Al-Hoshani N, Al-Ghamdi MS, Nowar EE. 2024. Probing the interaction of Paenibacillus larvae bacteriophage as a biological agent to control the american foulbrood disease in honeybee. Saudi J Biol Sci 31:104002.
117.
Braunstein R, Hubanic G, Yerushalmy O, Oren-Alkalay S, Rimon A, Coppenhagen-Glazer S, Niv O, Marom H, Barsheshet A, Hazan R. 2024. Successful phage-antibiotic therapy of P. aeruginosa implant-associated infection in a Siamese cat. Vet Q 44:1–9.
118.
Samson R, Dharne M, Khairnar K. 2024. Bacteriophages: status quo and emerging trends toward one health approach. Sci Total Environ 908:168461.

Information & Contributors

Information

Published In

cover image Applied and Environmental Microbiology
Applied and Environmental Microbiology
Volume 90Number 1023 October 2024
eLocator: e01353-24
Editor: Nicole R. Buan, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
PubMed: 39345202

History

Published online: 30 September 2024

Permissions

Request permissions for this article.

Keywords

  1. Klebsiella pneumoniae
  2. bacterial drug resistance
  3. bacteriophages
  4. phage therapy

Contributors

Authors

The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
Author Contribution: Writing – original draft.
Xiaoyu Yang
Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
Regenerative Medicine Research Center, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
Author Contributions: Software and Writing – review and editing.
Department of Clinical Laboratory, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
The Affliated Hospital of College of Medical, Kunming University of Science and Technology, Kunming, Yunnan, China
Author Contributions: Funding acquisition and Resources.

Editor

Nicole R. Buan
Editor
University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Notes

The authors declare no conflict of interest.

Metrics & Citations

Metrics

Note:

  • For recently published articles, the TOTAL download count will appear as zero until a new month starts.
  • There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.
  • Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. For an editable text file, please select Medlars format which will download as a .txt file. Simply select your manager software from the list below and click Download.

View Options

LOGIN OPTIONS
Non-Member Login
Buy Article
Applied and Environmental Microbiology Vol.90 • Issue 10 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Applied and Environmental Microbiology
ASM members can purchase subscriptions to journals.
Join or renew

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

LOGIN OPTIONS
Non-Member Login
Buy Article
Applied and Environmental Microbiology Vol.90 • Issue 10 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Applied and Environmental Microbiology
ASM members can purchase subscriptions to journals.
Join or renew

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Figures

Tables

Media

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy