Free access
Research Article
1 April 2003

Use of Monoclonal Antibodies to Lipopolysaccharide for Antigenic Analysis of Coxiella burnetii

ABSTRACT

Antigenic differences among Coxiella burnetii strains were analyzed. The monoclonal antibodies against the lipopolysaccharide outer core did not react with the strains containing a QpRS plasmid or with plasmidless strains, whereas they reacted with strains containing a QpH1 or QpDV plasmid. C. burnetii isolates could be divided into two groups immunologically.
Coxiella burnetii, an obligate intracellular bacterium, is the etiologic agent of Q fever. It is widely distributed in nature and is responsible for infection in various animals and humans (5, 8). Many C. burnetii strains have been isolated from milk, ticks, and human patients with acute and chronic Q fever. Although all strains so far studied belong to the same serotype, it has become apparent that C. burnetii strains differ in their antigenic (3, 17) and genetic (4, 10, 12, 18, 19) properties. The remarkable antigenic differences among strains are due to lipopolysaccharide (LPS) (3). However, the components that differ among strains have not been elucidated because the LPS ladder-like bands are close together and share many antigenic epitopes (9, 16). In addition, the differences among strains are confounded by an LPS change that occurs during serial passages in eggs or tissue culture—a process called phase variation (8). During phase variation, phase I cells, with full-length LPS O-chains, change to intermediate phases with decreasing LPS O-chain lengths and then to phase II, with truncated LPS. This LPS change is an irreversible transition and is used as one of the criteria for distinguishing the phase state of C. burnetii (11). Recently, we analyzed this LPS change by the use of monoclonal antibodies (MAbs) against LPS O-chains and the LPS outer core (7). In this report, to define the LPS component that differs among C. burnetii strains, the reactions of the MAbs against 21 strains were analyzed. Our results suggest that C. burnetii strains could be divided into two groups immunologically. This conclusion is not confounded by the LPS change that occurs during phase variation.
C. burnetii Nine Mile strain phase I cells and 20 other strains were immunologically compared with respect to their reactivities with 10 MAbs. The name, original source, and plasmid type for each strain are listed in Table 1. Other characteristics of each strain are described elsewhere (6, 16, 17). The samples of strains KAV and PAV used were purified LPSs (2), and the samples of other strains used were prepared from whole-cell lysates by digestion with proteinase K as described previously (6). The MAbs used in this study were previously divided into three groups according to their reactions in Western blots following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) (7). The MAbs of groups I (H5A, H45, and H83) and II (H21), all of which recognize the LPS O-chains of Nine Mile strain phase I, mainly produced ladder-like bands above 20 and 15 kDa, respectively. The MAbs of group III (H73, H76, H78, H91, H99, and H100) recognized the 14-kDa LPS outer core of Nine Mile strain phase I and the Crazy variant (one of the intermediate-phase cells). None of the MAbs reacted with Nine Mile strain phase II LPS (7). SDS-PAGE was carried out by using a 15% separating gel. The LPS profiles were observed by silver staining and Western blotting as described previously (16).
The immunochemical properties of the LPSs of the 21 strains were compared by Western blotting following SDS-PAGE. The MAbs of groups I (H5A, H45, and H83) and II (H21) reacted with all 21 strains. Their reaction patterns were slightly different from those against Nine Mile strain phase I. The MAbs of group III (H73, H76, H78, H91, H99, and H100) did not react with the KAV, PAV, Priscilla, G Q212, Ko Q229, and S Q217 strains but reacted with the other 15 strains with a 14-kDa dense band. The mouse antiserum against Nine Mile strain phase I cells reacted with all strains with ladder-like bands above 14 kDa. Figure 1 shows the reaction patterns of the representative MAbs of groups II (H21) and III (H78) against the El Tayeb, Ohio 314, California 76, Henzerling, Bangui, MAN, ME, Ko Q229, S Q217, and Priscilla strains. The reactions of the MAbs are summarized in Table 2. With silver stain, all 21 strains showed ladder-like LPS profiles (data not shown).
The reactions of the MAbs of group III, which recognized the 14-kDa LPS outer core of the Nine Mile strain, indicate that the LPS outer cores of KAV, PAV, Priscilla, G Q212, Ko Q229, and S Q217 differ antigenically from those of the other 15 strains (Table 2 and Fig. 1B). This antigenic difference is not due to the phenomenon of phase variation because the ladder-like LPS profiles indicate that none of the strains examined are pure phase II cells and are in good agreement with those observed by silver staining in the study by Hackstadt (3). This suggests that the KAV, PAV, Priscilla, G Q212, Ko Q229, and S Q217 strains lack the epitopes recognized by the MAbs of group III. On the other hand, it is unclear whether the difference in the ladder-like banding above 15 kDa is due to the phenomenon of phase variation (Fig. 1A). The 14-kDa LPS outer-core oligosaccharide of the Nine Mile strain contains mainly dihydrohydroxystreptose and galactosaminuronyl-α(1-6)-glucosamine (2) and seems to be the dominant antigenic and immunogenic determinant (1, 13, 14). In C. burnetii, these properties have been analyzed in detail with the Nine Mile and Priscilla strains. These strains differ in their distributions of dihydrohydroxystreptose in LPS (15) and their immunogenic properties and virulence to experimental animals (9). Considering these earlier findings, the antigenic difference detected in this study could be related to the chemical and immunogenic differences between the Nine Mile and Priscilla strains. Furthermore, this antigenic difference might be related to the virulence difference, since host immune responses are associated with the infection of this intracellular bacterium. It is likely that the KAV, PAV, G Q212, Ko Q229 and S Q217 strains also differ from the Nine Mile strain in their chemical and immunological properties and virulence. The six strains differentiated from the other strains have similar genetic properties (QpRS or plasmidless types) and were isolated in the same part of the world (Canada or the United States). Therefore, the serotyping system based on the reactions of the MAbs may be useful in diagnostic and epidemiologic investigations of Q fever. Using this serotyping system would allow C. burnetii strains to be differentiated into two antigenic groups without confusing the phenomenon of phase variation. Further studies of the LPS outer core in a large number of strains from various sources may help us to understand the differences in immunogenic properties and virulence among C. burnetii strains.
FIG.1.
FIG.1. Reaction patterns in Western blotting of representative C. burnetii strains following SDS-PAGE with proteinase K-digested antigen. Lanes: 1, El Tayeb; 2, Ohio 314; 3, California 76; 4, Henzerling; 5, Bangui; 6, MAN; 7, ME; 8, Ko Q229; 9, S Q217; 10, Priscilla strains. (A) Reacted with MAb H21 (group II); (B) reacted with MAb H78 (III). Molecular masses are indicated on the left of each panel.
TABLE 1.
TABLE 1. Sources of C. burnetii strains examined
StrainOriginDiseaseGeographical sourcePlasmid typeg
Nine Mile phase IaTick United StatesQpH1
BanguiaHuman (serum)AcuteCentral AmericaQpH1
California 76aCow (milk)PersistentUnited StatesQpH1
EI TayebbTick EgyptQpH1
HenzerlingaHuman (serum)AcuteItalyQpH1
Ohio 314aCow (milk)PersistentUnited StatesQpH1
MANcHuman (blood)Aortic aneurysmFranceQpDV
MEcHuman (heart valve)EndocarditisFranceQpDV
KAVdHuman (aortic valve)EndocarditisUnited StatesQpRS
PAVdHuman (aortic valve)EndocarditisUnited StatesQpRS
PriscillacGoat (placenta)AbortionUnited StatesQpRS
G Q212bHuman (heart valve)EndocarditisCanadaPlasmidlessh
Ko Q229bHuman (heart valve)EndocarditisCanadaPlasmidless
S Q217bHuman (liver)HepatitisUnited StatesPlasmidless
307eHuman (serum)AcuteJapanQpH1
1MfCow (milk)PersistentJapanQpH1
3MfCow (milk)PersistentJapanQpH1
50FfCow (aborted fetus)AbortionJapanQpH1
57TfTick JapanQpH1
58TfTick JapanQpH1
60MfCow (milk)PersistentJapanQpH1
a
Obtained from the American Type Culture Collection.
b
Obtained from L. P. Mallavia, Washington State University, Pullman, Wash.
c
Obtained from J. Kazar, Institute of Virology, Bratislava, Slovakia.
d
Purified LPS was obtained from K. Amano.
e
Obtained from H. Nagaoka, Institute of Public Health and Environmental Science, Shizuoka, Japan.
f
Our laboratory.
g
Plasmid types reported by Samuel et al. (12), Valkova and Kazar (18), and Zhang et al. (19).
h
Does not contain plasmid.
TABLE 2.
TABLE 2. Reactions of MAbs in Western blots
StrainNo. of samplesReaction witha:   Plasmid typed
  MAbb (group)  Mouse antiserac 
  H5A (I)H21 (II)H78 (III)  
Nine Mile phase I1++++QpH1
Bangui, California 76, El Tayeb, Henzerling, Ohio 314, MAN, ME, 307, 1M, 3M, 50F, 57T, 58T, 60M14++++QpH1; QpDV
KAV, PAV, Priscilla, G Q212, Ko Q229, S Q2176+++QpRS; plasmidless
a
+, reaction; −, no reaction.
b
Representative MAbs of each group. Other MAbs showed the same reaction patterns as the representative MAbs.
c
Sera from mice infected with Nine Mile strain phase I cells.
d
See Table 1.

Acknowledgments

We are grateful to J. Kazar, L. P. Mallavia, and H. Nagaoka, for their help in providing the C. burnetii strains and purified LPS.
This work was financially supported by Science Research Grants 07306015 and 10460140 from the Ministry of Education, Science, Sports and Culture and by Health Sciences Research grant H10-Emerg.-7 on Emerging and Re-emerging Infectious Diseases from the Ministry of Health and Welfare of Japan.

REFERENCES

1.
Amano, K., and J. C. Williams.1984. Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J. Bacteriol.160:994-1002.
2.
Amano, K., J. C. Williams, S. R. Missler, and V. N. Reinhold.1987. Structure and biological relationships of Coxiella burnetii lipopolysaccharides. J. Biol. Chem.262:4740-4747.
3.
Hackstadt, T.1986. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect. Immun.52:337-340.
4.
Heinzen, R., G. L. Stiegler, L. L. Whiting, S. A. Schmitt, L. P. Mallavia, and M. E. Frazier.1990. Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. Ann. N. Y. Acad. Sci.590:504-513.
5.
Hirai, K., and H. To.1998. Advances in the understanding of Coxiella burnetii infection in Japan. J. Vet. Med. Sci.60:781-790.
6.
Ho, T., K. K. Htwe, N. Yamasaki, G. Q. Zhang, M. Ogawa, T. Yamaguchi, H. Fukushi, and K. Hirai.1995. Isolation of Coxiella burnetii from dairy cattle and ticks, and some characteristics of the isolates in Japan. Microbiol. Immunol.39:663-671.
7.
Hotta, A., M. Kawamura, H. To, M. Andoh, T. Yamaguchi, H. Fukushi, and K. Hirai.2002. Phase variation analysis of Coxiella burnetii during serial passage in cell culture by use of monoclonal antibodies. Infect. Immun.70:4747-4749.
8.
Maurin, M., and D. Raoult.1999. Q fever. Clin. Microbiol. Rev.12:518-553.
9.
Moos, A., and T. Hackstadt.1987. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect. Immun.55:1144-1150.
10.
Nguyen, S. V., and K. Hirai.1999. Differentiation of Coxiella burnetii isolates by sequence determination and PCR-restriction fragment length polymorphism analysis of isocitrate dehydrogenase gene. FEMS Microbiol. Lett.180:249-254.
11.
Quevedo Diaz, M., and M. Lukacova.1998. Immunological consequences of Coxiella burnetii phase variation. Acta Virol.42:181-185.
12.
Samuel, J. E., M. E. Frazier, and L. P. Mallavia.1985. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect. Immun.49:775-779.
13.
Schramek, S., J. Radziejewska-Lebrecht, and H. Mayer.1985. 3-C-branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. Eur. J. Biochem.148:455-461.
14.
Scibienski, R. J.1980. Immunologic properties of protein-lipopolysaccharide complexes—III. Mol. Immunol.17:21-27.
15.
Skultety, L., R. Toman, and V. Patoprsty.1998. A comparative study of lipopolysaccharides from two Coxiella burnetii strains considered to be associated with acute and chronic Q fever. Carbohydr. Polym.35:189-194.
16.
To, H., A. Hotta, T. Yamaguchi, H. Fukushi, and K. Hirai.1998. Antigenic characteristic of the lipopolysaccharides of Coxiella burnetii isolates. J. Vet. Med. Sci.60:267-270.
17.
To, H., A. Hotta, G. Q. Zhang, S. V. Nguyen, M. Ogawa, T. Yamaguchi, H. Fukushi, K. Amano, and K. Hirai.1998. Antigenic characteristics of polypeptides of Coxiella burnetii isolates. Microbiol. Immunol.42:81-85.
18.
Valkova, D., and J. Kazar.1995. A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol. Lett.125:275-280.
19.
Zhang, G. Q., H. To, T. Yamaguchi, H. Fukushi, and K. Hirai.1997. Differentiation of Coxiella burnetii by sequence analysis of the gene (com1) encoding a 27-kDa outer membrane protein. Microbiol. Immunol.41:871-877.

Information & Contributors

Information

Published In

cover image Journal of Clinical Microbiology
Journal of Clinical Microbiology
Volume 41Number 4April 2003
Pages: 1747 - 1749
PubMed: 12682176

History

Received: 17 May 2002
Revision received: 29 September 2002
Accepted: 16 January 2003
Published online: 1 April 2003

Permissions

Request permissions for this article.

Contributors

Authors

Akitoyo Hotta
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Midori Kawamura
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Ho To
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Masako Andoh
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Tsuyoshi Yamaguchi
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Hideto Fukushi
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193
Ken-Ichi Amano
Central Research Laboratory, Akita University School of Medicine, 1-1-1 Hondo, Akita, Akita 010-8543, Japan
Katsuya Hirai [email protected]
Department of Veterinary Microbiology, Faculty of Agriculture, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193

Metrics & Citations

Metrics

Note: There is a 3- to 4-day delay in article usage, so article usage will not appear immediately after publication.

Citation counts come from the Crossref Cited by service.

Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

View options

PDF/ePub

PDF/ePub

Get Access

Buy Article
Journal of Clinical Microbiology Vol.41 • Issue 4 • ASM Journals Pay Per View, PPV 25
Journal Subscription
Journal of Clinical Microbiology
ASM members can purchase subscriptions to journals.
Join or renew

Figures and Media

Figures

Media

Tables

Share

Share

Share the article link

Share with email

Email a colleague

Share on social media

American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy