COVID 19 Special Collection
COVID-19 (SARS-CoV-2) Special Collection
Latest COVID-19 Articles
-
Research Article
Peptidoglycan-Associated Cyclic Lipopeptide Disrupts Viral Infectivity
In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.
Bryan A. Johnson, Adam Hage, Birte Kalveram, Megan Mears, Jessica A. Plante, Sergio E. Rodriguez, Zhixia Ding, Xuemei Luo, Dennis Bente, Shelton S. Bradrick, Alexander N. Freiberg, Vsevolod Popov, Ricardo Rajsbaum, Shannan Rossi, William K. Russell, Vineet D. Menachery
29 October 2019, JVI
-
Research Article
Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663
Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
Yutaka Terada, Yudai Kuroda, Shigeru Morikawa, Yoshiharu Matsuura, Ken Maeda, Wataru Kamitani
15 October 2019, JVI
-
Research Article
Glycine 29 Is Critical for Conformational Changes of the Spike Glycoprotein of Mouse Hepatitis Virus A59 Triggered by either Receptor Binding or High pH
Binding of the MHV S protein to the receptor mCEACAM1a triggers conformational changes of S proteins, leading to the formation of a six-helix bundle and viral and cellular membrane fusion. However, the mechanism by which the conformational change of the S protein is initiated after receptor binding has not been determined. In this study, we showed that while replacement of G29, a residue at the edge of the receptor binding interface and the center of the structural turn after the β1-sheet of the S protein, with D or T triggered spontaneous conformational changes of the S protein and pH-independent RIS, the G29P mutation significantly impeded the conformational changes of S proteins triggered by either receptor binding or pH 8.0. We reason that this structural turn might be critical for conformational changes of the S protein and that altering this structural turn could initiate conformational changes of the S protein, leading to membrane fusion.
Dan Mi, Xiuyuan Ou, Pei Li, Guiqing Peng, Yan Liu, Ruixuan Guo, Zhixia Mu, Fang Li, Kathryn Holmes, Zhaohui Qian
30 September 2019, JVI
-
Research Article
Fitness Barriers Limit Reversion of a Proofreading-Deficient Coronavirus
Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants.
Kevin W. Graepel, Maria L. Agostini, Xiaotao Lu, Nicole R. Sexton, Mark R. Denison
30 September 2019, JVI
-
Research Article
Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor
It is generally accepted that the coronaviral S protein is responsible for viral interaction with a cellular receptor. Here we show that the M protein is also an important player during early stages of HCoV-NL63 infection and that the concerted action of the two proteins (M and S) is a prerequisite for effective infection. We believe that this study broadens the understanding of HCoV-NL63 biology and may also alter the way in which we perceive the first steps of cell infection with the virus. The data presented here may also be important for future research into vaccine or drug development.
Antonina Naskalska, Agnieszka Dabrowska, Artur Szczepanski, Aleksandra Milewska, Krzysztof Piotr Jasik, Krzysztof Pyrc
12 September 2019, JVI
-
Research Article
Biochemical Analysis of Coronavirus Spike Glycoprotein Conformational Intermediates during Membrane Fusion
Recent studies using single-particle cryo-electron microscopy (cryoEM) revealed the mechanism underlying activation of viral fusion protein at the priming stage. However, characterizing the subsequent triggering stage underpinning transition from pre- to postfusion structures is difficult because single-particle cryoEM excludes unstable structures that appear as heterogeneous shapes. Therefore, population-based biochemical analysis is needed to capture features of unstable proteins. Here, we analyzed protease digestion products of a coronavirus fusion protein during activation; their sizes appear to be affected directly by the conformational state. We propose a model for the viral fusion protein in the intermediate state, which involves a compact structure and conformational changes that overcome steric hindrance within the three fusion protein subunits.
Miyuki Kawase, Michiyo Kataoka, Kazuya Shirato, Shutoku Matsuyama
12 September 2019, JVI
-
Review Article
Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs
Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainfluenzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment.
Michael G. Ison, Hans H. Hirsch
11 September 2019, CMR
-
Research Article
Comparative Analysis of Gene Expression in Virulent and Attenuated Strains of Infectious Bronchitis Virus at Subcodon Resolution
IBV is a major avian pathogen and presents a substantial economic burden to the poultry industry. Improved vaccination strategies are urgently needed to curb the global spread of this virus, and the development of suitable vaccine candidates will be aided by an improved understanding of IBV molecular biology. Our high-resolution data have enabled a precise study of transcription and translation in cells infected with both pathogenic and attenuated forms of IBV and expand our understanding of gammacoronaviral gene expression. We demonstrate that gene expression shows considerable intraspecies variation, with single nucleotide polymorphisms being associated with altered production of sgmRNA transcripts, and our RiboSeq data sets enabled us to uncover novel ribosomally occupied ORFs in both strains. The numerous cellular genes and gene networks found to be differentially expressed during virus infection provide insights into the host cell response to IBV infection.
Adam M. Dinan, Sarah Keep, Erica Bickerton, Paul Britton, Andrew E. Firth, Ian Brierley
28 August 2019, JVI
-
Research Article
Species-Specific Colocalization of Middle East Respiratory Syndrome Coronavirus Attachment and Entry Receptors
MERS-CoV uses the S1B domain of its spike protein to attach to its host receptor, dipeptidyl peptidase 4 (DPP4). The tissue localization of DPP4 has been mapped in different susceptible species. On the other hand, the S1A domain, the N-terminal domain of this spike protein, preferentially binds to several glycotopes of a2,3-sialic acids, the attachment factor of MERS-CoV. Here we show, using a novel method, that the S1A domain specifically binds to the nasal epithelium of dromedary camels, alveolar epithelium of humans, and intestinal epithelium of common pipistrelle bats. In contrast, it does not bind to the nasal epithelium of pigs or rabbits, nor does it bind to the intestinal epithelium of serotine bats and frugivorous bat species. This finding supports the importance of the S1A domain in MERS-CoV infection and tropism, suggests its role in transmission, and highlights its potential use as a component of novel vaccine candidates.
W. Widagdo, Nisreen M. A. Okba, Wentao Li, Alwin de Jong, Rik L. de Swart, Lineke Begeman, Judith M. A. van den Brand, Berend-Jan Bosch, Bart L. Haagmans
30 July 2019, JVI
-
Research Article
A Yeast Suppressor Screen Used To Identify Mammalian SIRT1 as a Proviral Factor for Middle East Respiratory Syndrome Coronavirus Replication
Middle East respiratory syndrome coronavirus (MERS-CoV) initially emerged in 2012 and has since been responsible for over 2,300 infections, with a case fatality ratio of approximately 35%. We have used the highly characterized model system of Saccharomyces cerevisiae to investigate novel functional interactions between viral proteins and eukaryotic cells that may provide new avenues for antiviral intervention. We identify a functional link between the MERS-CoV ORF4a proteins and the YDL042C/SIR2 yeast gene. The mammalian homologue of SIR2 is SIRT1, an NAD-dependent histone deacetylase. We demonstrate for the first time that SIRT1 is a proviral factor for MERS-CoV replication and that ORF4a has a role in modulating its activity in mammalian cells.
Stuart Weston, Krystal L. Matthews, Rachel Lent, Alexandra Vlk, Rob Haupt, Tami Kingsbury, Matthew B. Frieman
30 July 2019, JVI
-
Research Article
Engineering a Live Attenuated Porcine Epidemic Diarrhea Virus Vaccine Candidate via Inactivation of the Viral 2'-O-Methyltransferase and the Endocytosis Signal of the Spike Protein
PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2'-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2'-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.
Yixuan Hou, Hanzhong Ke, Jineui Kim, Dongwan Yoo, Yunfang Su, Patricia Boley, Juliet Chepngeno, Anastasia N. Vlasova, Linda J. Saif, Qiuhong Wang
17 July 2019, JVI
-
Research Article
Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Type I Interferon Signaling by Targeting IRF9
The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling.
Dang Wang, Jiyao Chen, Chaoliang Yu, Xinyu Zhu, Shangen Xu, Liurong Fang, Shaobo Xiao
17 July 2019, JVI
-
Genome Sequences
Complete Genome Sequence of a Severe Acute Respiratory Syndrome-Related Coronavirus from Kenyan Bats
We identified a strain of betacoronavirus BtKY72/Rhinolophus sp./Kenya/2007 (here BtKY72) from rectal swab samples in Kenyan bats. This paper reports the complete genomic sequence of BtKY72, which is closely related to BtCoV/BM48-31/Bulgaria/2008, a severe acute respiratory syndrome (SARS)-related virus from Rhinolophus bats in Europe.
Ying Tao, Suxiang Tong
11 July 2019, MRA
-
Research Article
Attenuation of Infectious Bronchitis Virus in Eggs Results in Different Patterns of Genomic Variation across Multiple Replicates
Infectious bronchitis remains a major problem in the global poultry industry, despite the existence of many different vaccines. IBV vaccines are currently developed by serial passage of a virulent strain on embryonated hen’s eggs until attenuation; however, little is known about the evolution of the viral population during the process of attenuation. High-throughput sequencing of four replicates of a serially egg-passaged IBV revealed a different pattern of genomic variation in each attenuated replicate and few consensus-level SNPs. This raises concerns that only a small number of genomic mutations are required to revert to a virulent phenotype, which may result in vaccine breakdown in the field. The observed hot spots of variation in the attenuated viruses have the potential to be used in the rational attenuation of virulent IBV for next-generation vaccine design.
Michael S. Oade, Sarah Keep, Graham L. Freimanis, Richard J. Orton, Paul Britton, John A. Hammond, Erica Bickerton
28 June 2019, JVI
-
Arterivirus nsp4 Antagonizes Interferon Beta Production by Proteolytically Cleaving NEMO at Multiple Sites
The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro. In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.
Jiyao Chen, Dang Wang, Zheng Sun, Li Gao, Xinyu Zhu, Jiahui Guo, Shangen Xu, Liurong Fang, Kui Li, Shaobo Xiao
29 May 2019, JVI
Podcast from AAC
Watch 2020: The year of COVID-19. Guest: Jeanne Marrazzo. Hosted by AAC Editor in Chief Cesar A. Arias.
Podcast from JCM
Watch COVID-19: Clinical Labs in the Media Spotlight with Dr. Katherine Wu and Dr. Susan Butler-Wu. Hosted by Journal of Clinical Microbiology Editor in Chief, Dr. Alexander McAdam.