American Society for Microbiology ("ASM") is committed to maintaining your confidence and trust with respect to the information we collect from you on websites owned and operated by ASM ("ASM Web Sites") and other sources. This Privacy Policy sets forth the information we collect about you, how we use this information and the choices you have about how we use such information.
FIND OUT MORE about the privacy policy

COVID-19 (SARS-CoV-2) Special Collection

COVID-19/SARS-CoV-2 collection image

ASM is committed to broadly disseminating research relevant to public health emergencies. This collection highlights all COVID-19/SARS-CoV-2 research published across ASM Journals. All content is free to read and available for text and data mining via PubMed Central.

View all ASM COVID-19/SARS-CoV-2 research

Latest Research

  • Microbiol SpectrArticle
    Persistent Nonviral Plasmid Vector in Nasal Tissues Causes False-Positive SARS-CoV-2 Diagnostic Nucleic Acid Tests

    ABSTRACT

    Biomedical personnel can become contaminated with nonhazardous reagents used in the laboratory. We describe molecular studies performed on nasal secretions collected longitudinally from asymptomatic laboratory coworkers to determine if they were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) circulating in the community or with SARS-CoV-2 DNA from a plasmid vector. Participants enrolled in a prospective study of incident SARS-CoV-2 infection had nasal swabs collected aseptically by study staff at enrollment, followed by weekly self-collection of anterior nasal swabs. SARS-CoV-2 diagnosis was performed by a real-time PCR test targeting the nucleocapsid gene. PCR tests targeting SARS-CoV-2 nonstructural protein 10 (nsp10), nsp14, and envelope and three regions of the plasmid vector were performed to differentiate amplification of SARS-CoV-2 RNA from the plasmid vector’s DNA. Nasal swabs from four asymptomatic coworkers with positive real-time PCR results for the SARS-CoV-2 nucleocapsid targets were negative when tested for SARS-CoV-2 nsp10, nsp14, and envelope protein. However, nucleic acids extracted from these nasal swabs amplified DNA regions of the plasmid vector used by the coworkers, including the ampicillin and neomycin/kanamycin resistance genes, the promoter-nucleocapsid junction, and unique codon-optimized regions. Nasal swabs from these individuals tested positive repeatedly, including during isolation. Longitudinal detection of plasmid DNA with SARS-CoV-2 nucleocapsid in nasal swabs suggests persistence in nasal tissues or colonizing bacteria. Nonviral plasmid vectors, while regarded as safe laboratory reagents, can interfere with molecular diagnostic tests. These reagents should be handled using proper personal protective equipment to prevent contamination of samples or laboratory personnel.
    IMPORTANCE Asymptomatic laboratory workers who tested positive for SARS-CoV-2 for days to months were found to harbor a laboratory plasmid vector containing SARS-CoV-2 DNA, which they had worked with in the past, in their nasal secretions. While prior studies have documented contamination of research personnel with PCR amplicons, our observation is novel, as these individuals shed the laboratory plasmid over days to months, including during isolation in their homes. This suggests that the plasmid was in their nasal tissues or that bacteria containing the plasmid had colonized their noses. While plasmids are generally safe, our detection of plasmid DNA in the nasal secretions of laboratory workers for weeks after they had stopped working with the plasmid shows the potential for these reagents to interfere with clinical tests and emphasizes that occupational exposures in the preceding months should be considered when interpreting diagnostic clinical tests.

    REFERENCES

    1.
    Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, Dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. 2020. Analytical sensitivity, and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat Microbiol 5:1299–1305.
    2.
    Davidi D, Fitzgerald S, Glaspell HL, Jalbert S, Klapperich CM, Landaverde L, Maheras S, Mattoon SE, Britto VM, Nguyen GT, Platt JT, Kuhfeldt K, Landsberg H, Stuopis CW, Turse JE, Hamer DH, Springer M. 2021. Amplicon residues in research laboratories masquerade as COVID-19 in surveillance tests. Cell Rep Methods 1:100005.
    3.
    Robinson-McCarthy LR, Mijalis AJ, Filsinger GT, de Puig H, Donghia NM, Schaus TE, Rasmussen RA, Ferreira R, Lunshof JE, Chao G, Ter-Ovanesyan D, Dodd O, Kuru E, Sesay AM, Rainbow J, Pawlowski AC, Wannier TM, Angenent-Mari NM, Najjar D, Yin P, Ingber DE, Tam JM, Church GM. 2021. Laboratory-generated DNA can cause anomalous pathogen diagnostic test results. Microbiol Spectr 9:e0031321.
    4.
    Montgomery TL, Paavola M, Bruce EA, Botten JW, Crothers JW, Krementsov DN. 2021. Laboratory worker self-contamination with noninfectious SARS-CoV-2 DNA can result in false-positive reverse transcriptase PCR-based surveillance testing. J Clin Microbiol 59:e0072321.
    5.
    Murakami M. 2013. Evaluation of DNA plasmid storage conditions. Open Biotechnol J 7:10–14.
    6.
    Nguyen HH, Park J, Park SJ, Lee C-S, Hwang S, Shin Y-B, Ha TH, Kim M. 2018. Long-term stability and integrity of plasmid-based DNA data storage. Polymers (Basel) 10:28.
    7.
    Wally N, Schneider M, Thannesberger J, Kastner MT, Bakonyi T, Indik S, Rattei T, Bedarf J, Hildebrand F, Law J, Jovel J, Steininger C. 2019. Plasmid DNA contaminant in molecular reagents. Sci Rep 9:1652.
    8.
    Lopez-Rios F, Illei PB, Rusch V, Ladanyi M. 2004. Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet 364:1157–1166.
    9.
    Delviks-Frankenberry K, Cingoz O, Coffin JM, Pathak VK. 2012. Recombinant origin, contamination, and de-discovery of XMRV. Curr Opin Virol 2:499–507.
    10.
    CDC. 2020. Real-time RT-PCR primers & probes (research use only). https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html. Accessed 12 January 2022.

    Information & Contributors

    Information

    Published In

    Microbiology Spectrum
    Online First
    eLocator: e01695-22
    Editor: Max Maurin, UJF-Grenoble 1, CHU Grenoble
    PubMed: 36226962

    History

    Received: 11 May 2022
    Accepted: 19 September 2022
    Published online: 13 October 2022

    Permissions

    Request permissions for this article.

    Keywords

    1. SARS-CoV-2
    2. plasmid vector
    3. nasal swab
    4. diagnostic test
    5. false test result

    Contributors

    Authors

    Ingrid A. Beck
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Sheila Styrchak
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Leslie Miller
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Winnie Yeung
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Daisy Ko
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Alyssa Oldroyd
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Samantha Hardy
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Song Li
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    John Houck
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Yonghou Jiang
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Nicholas Dambrauskas
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Catherine Darcey
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Andrew Raappana
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    William Selman
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    D. Noah Sather
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Department of Pediatrics, University of Washington, Seattle, Washington, USA
    Department of Global Health, University of Washington, Seattle, Washington, USA
    John D. Aitchison
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Department of Pediatrics, University of Washington, Seattle, Washington, USA
    Department of Biochemistry, University of Washington, Seattle, Washington, USA
    Whitney E. Harrington
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Department of Pediatrics, University of Washington, Seattle, Washington, USA
    Department of Global Health, University of Washington, Seattle, Washington, USA
    Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
    Department of Pediatrics, University of Washington, Seattle, Washington, USA
    Department of Global Health, University of Washington, Seattle, Washington, USA
    Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
    Department of Medicine, University of Washington, Seattle, Washington, USA

    Editor

    Max Maurin
    Editor
    UJF-Grenoble 1, CHU Grenoble

    Notes

    The authors declare no conflict of interest.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share

  • J Clin MicrobiolArticle
    Selection, Characterization, Calibration, and Distribution of the U.S. Serology Standard for Anti-SARS-CoV-2 Antibody Detection

    Selection, Characterization, Calibration, and Distribution of the U.S. Serology Standard for Anti-SARS-CoV-2 Antibody Detection

    ABSTRACT

    The SARS-CoV-2 pandemic resulted in a demand for highly specific and sensitive serological testing to evaluate seroprevalence and antiviral immune responses to infection and vaccines. Hence, there was an urgent need for a serology standard to harmonize results across different natural history and vaccine studies. The Frederick National Laboratory for Cancer Research (FNLCR) generated a U.S. serology standard for SARS-CoV-2 serology assays and subsequently calibrated it to the WHO international standard (National Institute for Biological Standards and Control [NIBSC] code 20/136) (WHO IS). The development included a collaborative study to evaluate the suitability of the U.S. serology standard as a calibrator for SARS-CoV-2 serology assays. The eight laboratories participating in the study tested a total of 17 assays, which included commercial and in-house-derived binding antibody assays, as well as neutralization assays. Notably, the use of the U.S. serology standard to normalize results led to a reduction in the inter-assay coefficient of variation (CV) for IgM levels (pre-normalization range, 370.6% to 1,026.7%, and post-normalization range, 52.8% to 242.3%) and a reduction in the inter-assay CV for IgG levels (pre-normalization range, 3,416.3% to 6,160.8%, and post-normalization range, 41.6% to 134.6%). The following results were assigned to the U.S. serology standard following calibration against the WHO IS: 246 binding antibody units (BAU)/mL for Spike IgM, 764 BAU/mL for Spike IgG, 1,037 BAU/mL for Nucleocapsid IgM, 681 BAU/mL for Nucleocapsid IgG assays, and 813 neutralizing international units (IU)/mL for neutralization assays. The U.S. serology standard has been made publicly available as a resource to the scientific community around the globe to help harmonize results between laboratories.

    REFERENCES

    1.
    Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. 2020. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544.
    2.
    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733.
    3.
    Stadlbauer D, Amanat F, Chromikova V, Jiang K, Strohmeier S, Arunkumar GA, Tan J, Bhavsar D, Capuano C, Kirkpatrick E, Meade P, Brito RN, Teo C, McMahon M, Simon V, Krammer F. 2020. SARS-CoV-2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Curr Protoc Microbiol 57:e100.
    4.
    Pinto LA, Shawar RM, O’Leary B, Kemp TJ, Cherry J, Thornburg N, Miller CN, Gallagher PS, Stenzel T, Schuck B, Owen SM, Kondratovich M, Satheshkumar PS, Schuh A, Lester S, Cassetti MC, Sharpless NE, Gitterman S, Lowy DR. 2022. A trans-governmental collaboration to independently evaluate SARS-CoV-2 serology assays. Microbiol Spectr 10:e0156421.
    5.
    Freeman B, Lester S, Mills L, Rasheed MAU, Moye S, Abiona O, Hutchinson GB, Morales-Betoulle M, Krapinunaya I, Gibbons A, Chiang CF, Cannon D, Klena J, Johnson JA, Owen SM, Graham BS, Corbett KS, Thornburg NJ. 2020. Validation of a SARS-CoV-2 spike protein ELISA for use in contact investigations and serosurveillance. bioRxiv.
    6.
    World Health Organization. 2006. WHO Expert Committee on Biological Standardization. World Health Organ Tech Rep Ser 932:1–137.
    7.
    CDC. 2022. Interim guidelines for COVID-19 antibody testing. CDC, Atlanta, GA. https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antibody-tests-guidelines.html.
    8.
    FDA. 2022. Antibody testing is not currently recommended to assess immunity after COVID-19 vaccination: FDA safety communication. FDA, Silver Spring, MD. https://www.fda.gov/medical-devices/safety-communications/antibody-testing-not-currently-recommended-assess-immunity-after-covid-19-vaccination-fda-safety.

    Information & Contributors

    Information

    Published In

    Journal of Clinical Microbiology
    Online First
    eLocator: e00995-22
    Editor: Melissa B. Miller, UNC School of Medicine
    PubMed: 36222529

    History

    Received: 8 July 2022
    Returned for modification: 5 August 2022
    Accepted: 19 September 2022
    Published online: 12 October 2022

    Permissions

    Request permissions for this article.

    Keywords

    1. SARS-CoV-2
    2. serology
    3. standard

    Contributors

    Authors

    Troy J. Kemp
    Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
    Jack T. Quesinberry
    Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
    Jim Cherry
    Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
    Douglas R. Lowy
    Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
    Vaccine, Immunity and Cancer Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA

    Editor

    Melissa B. Miller
    Editor
    UNC School of Medicine

    Notes

    Troy J. Kemp and Jack T. Quesinberry equally contributed. Author order was determined alphabetically by surname.
    The authors declare no conflict of interest.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share

  • Microbiol SpectrArticle
    One-Year Follow-Up of COVID-19 Patients Indicates Substantial Assay-Dependent Differences in the Kinetics of SARS-CoV-2 Antibodies

    ABSTRACT

    Determination of antibody levels against the nucleocapsid (N) and spike (S) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to estimate the humoral immune response after SARS-CoV-2 infection or vaccination. Differences in the design and specification of antibody assays challenge the interpretation of test results, and comparative studies are often limited to single time points per patient. We determined the longitudinal kinetics of antibody levels of 145 unvaccinated coronavirus disease 2019 (COVID-19) patients at four visits over 1 year upon convalescence using 8 commercial SARS-CoV-2 antibody assays (from Abbott, DiaSorin, Roche, Siemens, and Technoclone), as well as a virus neutralization test (VNT). A linear regression model was used to investigate whether antibody results obtained in the first 6 months after disease onset could predict the VNT results at 12 months. Spike protein-specific antibody tests showed good correlation to the VNT at individual time points (rS, 0.74 to 0.92). While longitudinal assay comparison with the Roche Elecsys anti-SARS-CoV-2 S test showed almost constant antibody concentrations over 12 months, the VNT and all other tests indicated a decline in serum antibody levels (median decrease to 14% to 36% of baseline). The antibody level at 3 months was the best predictor of the VNT results at 12 months after disease onset. The current standardization to a WHO calibrator for normalization to binding antibody units (BAU) is not sufficient for the harmonization of SARS-CoV-2 antibody tests. Assay-specific differences in absolute values and trends over time need to be considered when interpreting the course of antibody levels in patients.
    IMPORTANCE Determination of antibodies against SARS-CoV-2 will play an important role in detecting a sufficient immune response. Although all the manufacturers expressed antibody levels in binding antibody units per milliliter, thus suggesting comparable results, we found discrepant behavior between the eight investigated assays when we followed the antibody levels in a cohort of 145 convalescent patients over 1 year. While one assay yielded constant antibody levels, the others showed decreasing antibody levels to a varying extent. Therefore, the comparability of the assays must be improved regarding the long-term kinetics of antibody levels. This is a prerequisite for establishing reliable antibody level cutoffs for sufficient individual protection against SARS-CoV-2.

    REFERENCES

    1.
    COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at the John Hopkins University (JHU). https://coronavirus.jhu.edu/map.html. Accessed 5 January 2022.
    2.
    Kadam SB, Sukhramani GS, Bishnoi P, Pable AA, Barvkar VT. 2021. SARS-CoV-2, the pandemic coronavirus: molecular and structural insights. J Basic Microbiol 61:180–202.
    3.
    Semmler G, Traugott MT, Graninger M, Hoepler W, Seitz T, Kelani H, Karolyi M, Pawelka E, Aragón de La Cruz S, Puchhammer-Stöckl E, Aberle SW, Stiasny K, Zoufaly A, Aberle JH, Weseslindtner L. 2021. Assessment of S1-, S2-, and NCP-specific IgM, IgA, and IgG antibody kinetics in acute SARS-CoV-2 infection by a microarray and twelve other immunoassays. J Clin Microbiol 59:e02890-20.
    4.
    Ortega N, Ribes M, Vidal M, Rubio R, Aguilar R, Williams S, Barrios D, Alonso S, Hernández-Luis P, Mitchell RA, Jairoce C, Cruz A, Jimenez A, Santano R, Méndez S, Lamoglia M, Rosell N, Llupià A, Puyol L, Chi J, Melero NR, Parras D, Serra P, Pradenas E, Trinité B, Blanco J, Mayor A, Barroso S, Varela P, Vilella A, Trilla A, Santamaria P, Carolis C, Tortajada M, Izquierdo L, Angulo A, Engel P, García-Basteiro AL, Moncunill G, Dobaño C. 2021. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun 12:4740.
    5.
    Irsara C, Egger AE, Prokop W, Nairz M, Loacker L, Sahanic S, Pizzini A, Sonnweber T, Holzer B, Mayer W, Schennach H, Loeffler-Ragg J, Bellmann-Weiler R, Hartmann B, Tancevski I, Weiss G, Binder CJ, Anliker M, Griesmacher A, Hoermann G. 2021. Clinical validation of the Siemens quantitative SARS-CoV-2 spike IgG assay (sCOVG) reveals improved sensitivity and a good correlation with virus neutralization titers. Clin Chem Lab Med 59:1453–1462.
    6.
    Irsara C, Egger AE, Prokop W, Nairz M, Loacker L, Sahanic S, Pizzini A, Sonnweber T, Mayer W, Schennach H, Loeffler-Ragg J, Bellmann-Weiler R, Tancevski I, Weiss G, Anliker M, Griesmacher A, Hoermann G. 2021. Evaluation of four commercial, fully automated SARS-CoV-2 antibody tests suggests a revision of the Siemens SARS-CoV-2 IgG assay. Clin Chem Lab Med 59:1143–1154.
    7.
    Klausberger M, Duerkop M, Haslacher H, Wozniak-Knopp G, Cserjan-Puschmann M, Perkmann T, Lingg N, Aguilar PP, Laurent E, De Vos J, Hofner M, Holzer B, Stadler M, Manhart G, Vierlinger K, Egger M, Milchram L, Gludovacz E, Marx N, Koppl C, Tauer C, Beck J, Maresch D, Grunwald-Gruber C, Strobl F, Satzer P, Stadlmayr G, Vavra U, Huber J, Wahrmann M, Eskandary F, Breyer MK, Sieghart D, Quehenberger P, Leitner G, Strassl R, Egger AE, Irsara C, Griesmacher A, Hoermann G, Weiss G, Bellmann-Weiler R, Loeffler-Ragg J, Borth N, Strasser R, Jungbauer A, Hahn R, Mairhofer J, Hartmann B, Binder NB, et al. 2021. A comprehensive antigen production and characterisation study for easy-to-implement, specific and quantitative SARS-CoV-2 serotests. EBioMedicine 67:103348.
    8.
    World Health Organization (WHO). 18 November 2020. Establishment of the WHO International Standard and Reference Panel for anti-SARS-CoV-2 antibody. https://www.who.int/publications/m/item/WHO-BS-2020.2403. Accessed 6 January 2022.
    9.
    Focosi D, Maggi F, Mazzetti P, Pistello M. 2021. Viral infection neutralization tests: a focus on severe acute respiratory syndrome-coronavirus-2 with implications for convalescent plasma therapy. Rev Med Virol 31:e2170.
    10.
    Sholukh AM, Fiore-Gartland A, Ford ES, Miner MD, Hou YJ, Tse LV, Kaiser H, Zhu H, Lu J, Madarampalli B, Park A, Lempp FA, St Germain R, Bossard EL, Kee JJ, Diem K, Stuart AB, Rupert PB, Brock C, Buerger M, Doll MK, Randhawa AK, Stamatatos L, Strong RK, McLaughlin C, Huang M-L, Jerome KR, Baric RS, Montefiori D, Corey L. 2021. Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays. J Clin Microbiol 59:e0052721.
    11.
    Perkmann T, Perkmann-Nagele N, Koller T, Mucher P, Radakovics A, Marculescu R, Wolzt M, Wagner OF, Binder CJ, Haslacher H. 2021. Anti-spike protein assays to determine SARS-CoV-2 antibody levels: a head-to-head comparison of five quantitative assays. Microbiol Spectr 9:e0024721.
    12.
    Sonnweber T, Sahanic S, Pizzini A, Luger A, Schwabl C, Sonnweber B, Kurz K, Koppelstätter S, Haschka D, Petzer V, Boehm A, Aichner M, Tymoszuk P, Lener D, Theurl M, Lorsbach-Köhler A, Tancevski A, Schapfl A, Schaber M, Hilbe R, Nairz M, Puchner B, Hüttenberger D, Tschurtschenthaler C, Aßhoff M, Peer A, Hartig F, Bellmann R, Joannidis M, Gollmann-Tepeköylü C, Holfeld J, Feuchtner G, Egger A, Hoermann G, Schroll A, Fritsche G, Wildner S, Bellmann-Weiler R, Kirchmair R, Helbok R, Prosch H, Rieder D, Trajanoski Z, Kronenberg F, Wöll E, Weiss G, Widmann G, Löffler-Ragg J, Tancevski I. 2021. Cardiopulmonary recovery after COVID-19: an observational prospective multicentre trial. Eur Respir J 57:2003481.
    13.
    Gallais F, Gantner P, Bruel T, Velay A, Planas D, Wendling MJ, Bayer S, Solis M, Laugel E, Reix N, Schneider A, Glady L, Panaget B, Collongues N, Partisani M, Lessinger JM, Fontanet A, Rey D, Hansmann Y, Kling-Pillitteri L, Schwartz O, De Seze J, Meyer N, Gonzalez M, Schmidt-Mutter C, Fafi-Kremer S. 2021. Evolution of antibody responses up to 13 months after SARS-CoV-2 infection and risk of reinfection. EBioMedicine 71:103561.
    14.
    Schallier A, De Baets S, De Bruyne D, Dauwe K, Herpol M, Couck P. 2021. Assay dependence of long-term kinetics of SARS-CoV-2 antibodies. Diagn Microbiol Infect Dis 100:115403.
    15.
    Nakagama Y, Nitahara Y, Kaku N, Tshibangu-Kabamba E, Kido Y. 2022. A dual-antigen SARS-CoV-2 serological assay reflects antibody avidity. J Clin Microbiol 60:e0226221.
    16.
    Favresse J, Eucher C, Elsen M, Gillot C, Van Eeckhoudt S, Dogné J-M, Douxfils J. 2021. Persistence of anti-SARS-CoV-2 antibodies depends on the analytical kit: a report for up to 10 months after infection. Microorganisms 9:556.
    17.
    Luo H, Camilleri D, Garitaonandia I, Djumanov D, Chen T, Lorch U, Taubel J, Wang D. 2021. Kinetics of anti-SARS-CoV-2 IgG antibody levels and potential influential factors in subjects with COVID-19: a 11-month follow-up study. Diagn Microbiol Infect Dis 101:115537.
    18.
    Kahre E, Galow L, Unrath M, Haag L, Blankenburg J, Dalpke AH, Luck C, Berner R, Armann JP. 2021. Kinetics and seroprevalence of SARS-CoV-2 antibodies: a comparison of 3 different assays. Sci Rep 11:14893.
    19.
    Le Bert N, Chia WN, Wan WY, Teo AKJ, Chong SZ-R, Tan N, Tan DSC, Chia A, Tan IB, Kunasegaran K, Chua QX, Abdad MY, Ng ASH, Vasoo S, Ang JX-L, Lee MS, Sun L, Fang J, Zhu F, Cook AR, Aw TC, Huang J, Tam C, Lee FS, Clapham H, Goh EJ-K, Peou MSS, Tan SP, Ong SK, Wang L-F, Bertoletti A, Hsu LY, Ong BC. 2021. Widely heterogeneous humoral and cellular immunity after mild SARS-CoV-2 infection in a homogeneous population of healthy young men. Emerg Microbes Infect 10:2141–2150.
    20.
    Favresse J, Elsen M, Eucher C, Laffineur K, Van Eeckhoudt S, Nicolas JB, Gillot C, Dogne JM, Douxfils J. 2021. Long-term kinetics of anti-SARS-CoV-2 antibodies in a cohort of 197 hospitalized and non-hospitalized COVID-19 patients. Clin Chem Lab Med 59:e179–e183.
    21.
    Violan C, Toran P, Quirant B, Lamonja-Vicente N, Carrasco-Ribelles LA, Chacon C, Manresa-Dominguez JM, Ramos-Roure F, Roso-Llorach A, Pujol A, Ouchi D, Monteagudo M, Montero P, Garcia-Sierra R, Armestar F, Dacosta-Aguayo R, Dolade M, Prat N, Bonet JM, Clotet B, Blanco I, Prado JG, Caceres EMM. 2021. Antibody kinetics to SARS-CoV-2 at 13.5 months, by disease severity. medRxiv doi:
    22.
    Garner-Spitzer E, Wagner A, Kundi M, Stockinger H, Repic A, Schoetta A-M, Gudipati V, Huppa JB, Kunert R, Mayrhofer P, Kreil TR, Farcet MR, Hoeltl E, Wiedermann U. 2021. The kinetic of SARS-CoV-2 antibody (Ab) decline determines the threshold for Ab persistence up to one year. medRxiv doi:
    23.
    De Giorgi V, West KA, Henning AN, Chen LN, Holbrook MR, Gross R, Liang J, Postnikova E, Trenbeath J, Pogue S, Scinto T, Alter HJ, Cantilena CC. 2021. Naturally acquired SARS-CoV-2 immunity persists for up to 11 months following infection. J Infect Dis 224:1294–1304.
    24.
    Terpos E, Stellas D, Rosati M, Sergentanis TN, Hu X, Politou M, Pappa V, Ntanasis-Stathopoulos I, Karaliota S, Bear J, Donohue D, Pagoni M, Grouzi E, Korompoki E, Pavlakis GN, Felber BK, Dimopoulos MA. 2021. SARS-CoV-2 antibody kinetics eight months from COVID-19 onset: persistence of spike antibodies but loss of neutralizing antibodies in 24% of convalescent plasma donors. Eur J Intern Med 89:87–96.
    25.
    Varona JF, Madurga R, Penalver F, Abarca E, Almirall C, Cruz M, Ramos E, Castellano-Vazquez JM. 2021. Kinetics of anti-SARS-CoV-2 antibodies over time. Results of 10 month follow up in over 300 seropositive health care workers. Eur J Intern Med 89:97–103.
    26.
    Zhu L, Xu X, Zhu B, Guo X, Xu K, Song C, Fu J, Yu H, Kong X, Peng J, Huang H, Zou X, Ding Y, Bao C, Zhu F, Hu Z, Wu M, Shen H. 2021. Kinetics of SARS-CoV-2 specific and neutralizing antibodies over seven months after symptom onset in COVID-19 patients. Microbiol Spectr 9:e00590.
    27.
    Theel ES, Johnson PW, Kunze KL, Wu L, Gorsh AP, Granger D, Roforth MM, Jerde CR, Lasho M, Andersen KJ, Murphy BM, Harring J, Lake DF, Svarovsky SA, Senefeld JW, Carter RE, Joyner MJ, Baumann NA, Mills JR. 2021. SARS-CoV-2 serologic assays dependent on dual-antigen binding demonstrate diverging kinetics relative to other antibody detection methods. J Clin Microbiol 59:e0123121.
    28.
    Benner SE, Patel EU, Laeyendecker O, Pekosz A, Littlefield K, Eby Y, Fernandez RE, Miller J, Kirby CS, Keruly M, Klock E, Baker OR, Schmidt HA, Shrestha R, Burgess I, Bonny TS, Clarke W, Caturegli P, Sullivan D, Shoham S, Quinn TC, Bloch EM, Casadevall A, Tobian AAR, Redd AD. 2020. SARS-CoV-2 antibody avidity responses in COVID-19 patients and convalescent plasma donors. J Infect Dis 222:1974–1984.
    29.
    Pichler D, Baumgartner M, Kimpel J, Rössler A, Riepler L, Bates K, Fleischer V, von Laer D, Borena W, Würzner R. 2021. Marked increase in avidity of SARS-CoV-2 antibodies 7–8 months after infection is not diminished in old age. J Infect Dis 224:764–770.
    30.
    Macdonald PJ, Ruan Q, Grieshaber JL, Swift KM, Taylor RE, Prostko JC, Tetin SY. 2022. Affinity of anti-spike antibodies in SARS-CoV-2 patient plasma and its effect on COVID-19 antibody assays. EBioMedicine 75:103796.
    31.
    Reindl M, Waters P. 2019. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol 15:89–102.
    32.
    Ferrari D, Clementi N, Spanò SM, Albitar-Nehme S, Ranno S, Colombini A, Criscuolo E, Di Resta C, Tomaiuolo R, Viganó M, Mancini N, De Vecchi E, Locatelli M, Mangia A, Perno CF, Banfi G. 2021. Harmonization of six quantitative SARS-CoV-2 serological assays using sera of vaccinated subjects. Clin Chim Acta 522:144–151.
    33.
    Pelleau S, Woudenberg T, Rosado J, Donnadieu F, Garcia L, Obadia T, Gardais S, Elgharbawy Y, Velay A, Gonzalez M, Nizou JY, Khelil N, Zannis K, Cockram C, Merkling SH, Meola A, Kerneis S, Terrier B, de Seze J, Planas D, Schwartz O, Dejardin F, Petres S, von Platen C, Pellerin SF, Arowas L, de Facci LP, Duffy D, Cheallaigh CN, Dunne J, Conlon N, Townsend L, Duong V, Auerswald H, Pinaud L, Tondeur L, Backovic M, Hoen B, Fontanet A, Mueller I, Fafi-Kremer S, Bruel T, White M. 2021. Kinetics of the severe acute respiratory syndrome coronavirus 2 antibody response and serological estimation of time since infection. J Infect Dis 224:1489–1499.
    34.
    Post N, Eddy D, Huntley C, van Schalkwyk MCI, Shrotri M, Leeman D, Rigby S, Williams SV, Bermingham WH, Kellam P, Maher J, Shields AM, Amirthalingam G, Peacock SJ, Ismail SA. 2020. Antibody response to SARS-CoV-2 infection in humans: a systematic review. PLoS One 15:e0244126.
    35.
    Zeng F, Dai C, Cai P, Wang J, Xu L, Li J, Hu G, Wang Z, Zheng F, Wang L. 2020. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: a possible reason underlying different outcome between sex. J Med Virol 92:2050–2054.
    36.
    Huang B, Cai Y, Li N, Li K, Wang Z, Li L, Wu L, Zhu M, Li J, Wang Z, Wu M, Li W, Wu W, Zhang L, Xia X, Wang S, Chen H, Wang Q. 2021. Sex-based clinical and immunological differences in COVID-19. BMC Infect Dis 21:647.
    37.
    Egger AE, Irsara C, Holzer B, Winkler C, Bellmann-Weiler R, Weiss G, Hartmann B, Prokop W, Hoermann G, Griesmacher A, Anliker M. 2022. Borderline and weakly positive antibody levels against the S-protein of SARS-CoV-2 exhibit limited agreement with virus neutralization titres. J Clin Virol Plus 2:100058.
    38.
    Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland WH, Porrot F, Staropoli I, Lemoine F, Péré H, Veyer D, Puech J, Rodary J, Baele G, Dellicour S, Raymenants J, Gorissen S, Geenen C, Vanmechelen B, Wawina-Bokalanga T, Martí-Carreras J, Cuypers L, Sève A, Hocqueloux L, Prazuck T, Rey F, Simon-Loriere E, Bruel T, Mouquet H, André E, Schwartz O. 2022. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602:671–675.
    39.
    Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR. 2021. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 24:103341.
    40.
    World Health Organization (WHO). 2020. Coronavirus disease (COVID-19): symptoms. https://www.who.int/health-topics/coronavirus#tab=tab_3. Accessed 12 January 2022.
    41.
    Burkert FR, Lanser L, Bellmann-Weiler R, Weiss G. 2021. Coronavirus disease 2019: clinics, treatment, and prevention. Front Microbiol 12:761887.
    42.
    LOINC. COVID-19 clinical status by WHO classification. https://loinc.org/97852-8/. Accessed 6 January 2022.

    Information & Contributors

    Information

    Published In

    Microbiology Spectrum
    Online First
    eLocator: e00597-22
    Editor: William D. Rawlinson, Prince of Wales Hospital
    PubMed: 36222681

    History

    Received: 17 February 2022
    Accepted: 6 September 2022
    Published online: 12 October 2022

    Peer Review History

    Download review history as PDF.

    Permissions

    Request permissions for this article.

    Keywords

    1. SARS-CoV-2
    2. antibody kinetics
    3. assay comparison
    4. neutralizing antibodies
    5. predictive modelling

    Contributors

    Authors

    Alexander E. Egger
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Sabina Sahanic
    Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
    Andreas Gleiss
    Section for Clinical Biometrics, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
    Franz Ratzinger
    Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
    Barbara Holzer
    Austrian Agency for Health and Food Safety (AGES), Department for Animal Health, Moedling, Austria
    Christian Irsara
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Nikolaus Binder
    Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
    Christoph Winkler
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Christoph J. Binder
    Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
    Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
    Lorin Loacker
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Boris Hartmann
    Austrian Agency for Health and Food Safety (AGES), Department for Animal Health, Moedling, Austria
    Markus Anliker
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Guenter Weiss
    Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
    Thomas Sonnweber
    Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
    Ivan Tancevski
    Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
    Andrea Griesmacher
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    Judith Löffler-Ragg [email protected]
    Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
    Central Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital of Innsbruck, Innsbruck, Austria
    MLL (Munich Leukemia Laboratory), Munich, Germany

    Editor

    William D. Rawlinson
    Editor
    Prince of Wales Hospital

    Reviewer

    Zin Naing
    ad hoc peer reviewer
    NSW Health Pathology

    Notes

    The authors declare a conflict of interest. C.J.B.: Board member of Technoclone GmbH N.B.: employee of Technoclone GmbH, supply with Technoclone ELISA.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share

  • mSphereArticle
    SARS-CoV-2 RNA Is Readily Detectable at Least 8 Months after Shedding in an Isolation Facility

    ABSTRACT

    Environmental monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for research and public health purposes has grown exponentially throughout the coronavirus disease 2019 (COVID-19) pandemic. Monitoring wastewater for SARS-CoV-2 provides early warning signals of virus spread and information on trends in infections at a community scale. Indoor environmental monitoring (e.g., swabbing of surfaces and air filters) to identify potential outbreaks is less common, and the evidence for its utility is mixed. A significant challenge with surface and air filter monitoring in this context is the concern of “relic RNA,” noninfectious RNA found in the environment that is not from recently deposited virus. Here, we report detection of SARS-CoV-2 RNA on surfaces in an isolation unit (a university dorm room) for up to 8 months after a COVID-19-positive individual vacated the space. Comparison of sequencing results from the same location over two time points indicated the presence of the entire viral genome, and sequence similarity confirmed a single source of the virus. Our findings highlight the need to develop approaches that account for relic RNA in environmental monitoring.
    IMPORTANCE Environmental monitoring of SARS-CoV-2 is rapidly becoming a key tool in infectious disease research and public health surveillance. Such monitoring offers a complementary and sometimes novel perspective on population-level incidence dynamics relative to that of clinical studies by potentially allowing earlier, broader, more affordable, less biased, and less invasive identification. Environmental monitoring can assist public health officials and others when deploying resources to areas of need and provides information on changes in the pandemic over time. Environmental surveillance of the genetic material of infectious agents (RNA and DNA) in wastewater became widely applied during the COVID-19 pandemic. There has been less research on other types of environmental samples, such as surfaces, which could be used to indicate that someone in a particular space was shedding virus. One challenge with surface surveillance is that the noninfectious genetic material from a pathogen (e.g., RNA from SARS-CoV-2) may be detected in the environment long after an infected individual has left the space. This study aimed to determine how long SARS-CoV-2 RNA could be detected in a room after a COVID-positive person had been housed there.

    REFERENCES

    1.
    Zhu Y, Oishi W, Maruo C, Saito M, Chen R, Kitajima M, Sano D. 2021. Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks. Sci Total Environ 767:145124.
    2.
    Hrudey SE, Conant B. 2022. The devil is in the details: emerging insights on the relevance of wastewater surveillance for SARS-CoV-2 to public health. J Water Health 20:246–270.
    3.
    Bibby K, Bivins A, Wu Z, North D. 2021. Making waves: plausible lead time for wastewater based epidemiology as an early warning system for COVID-19. Water Res 202:117438.
    4.
    Kirby AE, Welsh RM, Marsh ZA, Yu AT, Vugia DJ, Boehm AB, Wolfe MK, White BJ, Matzinger SR, Wheeler A, Bankers L, Andresen K, Salatas C, Gregory DA, Johnson MC, Trujillo M, Kannoly S, Smyth DS, Dennehy JJ, Sapoval N, Ensor K, Treangen T, Stadler LB, Hopkins L, New York City Department of Environmental Protection. 2022. Notes from the field: early evidence of the SARS-CoV-2 B.1.1.529 (omicron) variant in community wastewater—United States, November–December 2021. MMWR Morb Mortal Wkly Rep 71:103–105.
    5.
    Borges JT, Nakada LYK, Maniero MG, Guimarães JR. 2021. SARS-CoV-2: a systematic review of indoor air sampling for virus detection. Environ Sci Pollut Res Int 28:40460–40473.
    6.
    Coil DA, Albertson T, Banerjee S, Brennan G, Campbell AJ, Cohen SH, Dandekar S, Díaz-Muñoz SL, Eisen JA, Goldstein T, Jose IR, Juarez M, Robinson BA, Rothenburg S, Sandrock C, Stoian AMM, Tompkins DG, Tremeau-Bravard A, Haczku A. 2021. SARS-CoV-2 detection and genomic sequencing from hospital surface samples collected at UC Davis. PLoS One 16:e0253578.
    7.
    Zuniga-Montanez R, Coil DA, Eisen JA, Pechacek R, Guerrero RG, Kim M, Shapiro K, Bischel HN. 2022. The challenge of SARS-CoV-2 environmental monitoring in schools using floors and portable HEPA filtration units: fresh or relic RNA? PLos One 17:e0267212.
    8.
    Renninger N, Nastasi N, Bope A, Cochran SJ, Haines SR, Balasubrahmaniam N, Stuart K, Bivins A, Bibby K, Hull NM, Dannemiller KC. 2021. Indoor dust as a matrix for surveillance of COVID-19. mSystems 6.
    9.
    Maestre JP, Jarma D, Yu J-RF, Siegel JA, Horner SD, Kinney KA. 2021. Distribution of SARS-CoV-2 RNA signal in a home with COVID-19 positive occupants. Sci Total Environ 778:146201.
    10.
    Addetia A, Lin MJ, Peddu V, Roychoudhury P, Jerome KR, Greninger AL. 2020. Sensitive recovery of complete SARS-CoV-2 genomes from clinical samples by use of Swift Biosciences’ SARS-CoV-2 multiplex amplicon sequencing panel. J Clin Microbiol 59.
    11.
    Orf GS, Forberg K, Meyer TV, Mowerman I, Mohaimani A, Faron ML, Jennings C, Landay AL, Goldstein DY, Fox AS, Berg MG, Cloherty GA. 2021. SNP and phylogenetic characterization of low viral load SARS-CoV-2 specimens by target enrichment. FrontVirol 1.
    12.
    Harvey AP, Fuhrmeister ER, Cantrell ME, Pitol AK, Swarthout JM, Powers JE, Nadimpalli ML, Julian TR, Pickering AJ. 2021. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. Environ Sci Technol Lett 8:168–175.
    13.
    Salido RA, Cantú VJ, Clark AE, Leibel SL, Foroughishafiei A, Saha A, Hakim A, Nouri A, Lastrella AL, Castro-Martínez A, Plascencia A, Kapadia BK, Xia B, Ruiz CA, Marotz CA, Maunder D, Lawrence ES, Smoot EW, Eisner E, Crescini ES, Kohn L, Franco Vargas L, Chacón M, Betty M, Machnicki M, Wu MY, Baer NA, Belda-Ferre P, De Hoff P, Seaver P, Ostrander RT, Tsai R, Sathe S, Aigner S, Morgan SC, Ngo TT, Barber T, Cheung W, Carlin AF, Yeo GW, Laurent LC, Fielding-Miller R, Knight R. 2021. Analysis of SARS-CoV-2 RNA persistence across indoor surface materials reveals best practices for environmental monitoring programs. mSystems 6:e0113621.
    14.
    Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H, Yang J, Xing F, Liu J, Yip CC-Y, Poon RW-S, Tsoi H-W, Lo SK-F, Chan K-H, Poon VK-M, Chan W-M, Ip JD, Cai J-P, Cheng VC-C, Chen H, Hui CK-M, Yuen K-Y. 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395:514–523.
    15.
    Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359.
    16.
    Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10.
    17.
    Chang W, Pedersen H. 2022. ggplot2: create elegant data visualisations using the grammar of graphics. R package version. https://github.com/tidyverse/ggplot2.

    Information & Contributors

    Information

    Published In

    mSphere
    Online First
    eLocator: e00177-22
    Editor: Nicole M. Bouvier, Mount Sinai School of Medicine
    PubMed: 36218344

    History

    Received: 31 March 2022
    Accepted: 2 September 2022
    Published online: 11 October 2022

    Permissions

    Request permissions for this article.

    Keywords

    1. COVID-19
    2. RNA
    3. relic RNA
    4. SARS-CoV-2
    5. genome sequencing
    6. surface samples
    7. virus

    Contributors

    Authors

    Genome Center, University of California, Davis, Davis, California, USA
    Randi Pechacek
    Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
    Mo Kaze
    Genome Center, University of California, Davis, Davis, California, USA
    Rogelio Zuniga-Montanez
    Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
    Roque G. Guerrero
    Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
    Jonathan A. Eisen
    Genome Center, University of California, Davis, Davis, California, USA
    Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
    Department of Evolution and Ecology, University of California, Davis, Davis, California, USA
    Karen Shapiro
    Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
    Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA

    Editor

    Nicole M. Bouvier
    Editor
    Mount Sinai School of Medicine

    Notes

    The authors declare no conflict of interest.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share

  • Microbiol SpectrArticle
    SARS-CoV-2-Neutralizing Humoral IgA Response Occurs Earlier but Is Modest and Diminishes Faster than IgG Response

    ABSTRACT

    Secretory immunoglobulin A (IgA) plays a crucial role in mucosal immunity for preventing the invasion of exogenous antigens; however, little is understood about the neutralizing activity of serum IgA. Here, to examine the role of IgA antibodies against COVID-19 illnesses, we determined the neutralizing activity of serum/plasma IgG and IgA purified from previously SARS-CoV-2-infected and COVID-19 mRNA vaccine-receiving individuals. We found that serum/plasma IgA possesses substantial but rather modest neutralizing activity against SARS-CoV-2 compared to IgG with no significant correlation with the disease severity. Neutralizing IgA and IgG antibodies achieved the greatest activity at approximately 25 and 35 days after symptom onset, respectively. However, neutralizing IgA activity quickly diminished to below the detection limit approximately 70 days after onset, while substantial IgG activity was observed until 200 days after onset. The total neutralizing activity in sera/plasmas of those with COVID-19 largely correlated with those in purified IgG and purified IgA and levels of anti-SARS-CoV-2-S1-binding IgG and anti-SARS-CoV-2-S1-binding IgA. In individuals who were previously infected with SARS-CoV-2 but had no detectable neutralizing IgA activity, a single dose of BNT162b2 or mRNA-1273 elicited potent serum/plasma-neutralizing IgA activity, but the second dose did not further strengthen the neutralization antibody response. The present data show that the systemic immune stimulation with natural infection and COVID-19 mRNA-vaccines elicits both SARS-CoV-2-specific neutralizing IgG and IgA responses in serum, but the IgA response is modest and diminishes faster than the IgG response.
    IMPORTANCE Secretory dimeric immunoglobulin A (IgA) plays an important role in preventing the invasion of foreign objects by its neutralizing activity on mucosal surfaces, while monomeric serum IgA is thought to relate to the phagocytic immune system activation. Here, we report that individuals with the novel coronavirus disease (COVID-19) developed both systemic neutralizing IgG (nIgG) and IgA (nIgA) active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the nIgA response was quick and reached the highest activity earlier than the nIgG response, nIgA activity was modest and diminished faster than nIgG activity. In individuals who recovered from COVID-19 but had no detectable nIgA activity, a single dose of COVID-19 mRNA vaccine elicited potent nIgA activity, but the second dose did not further strengthen the antibody response. Our study provides novel insights into the role and the kinetics of serum nIgA against the pathogen in both naturally infected and COVID-19 mRNA vaccine-receiving COVID-19-convalescent individuals.

    REFERENCES

    1.
    Cerutti A, Rescigno M. 2008. The biology of intestinal immunoglobulin A responses. Immunity 28:740–750.
    2.
    Cerutti A, Cols M, Gentile M, Cassis L, Barra CM, He B, Puga I, Chen K. 2011. Regulation of mucosal IgA responses: lessons from primary immunodeficiencies. Ann N Y Acad Sci 1238:132–144.
    3.
    Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307:1915–1920.
    4.
    Mazanec MB, Coudret CL, Fletcher DR. 1995. Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies. J Virol 69:1339–1343.
    5.
    Stiehm ER. 2008. The four most common pediatric immunodeficiencies. J Immunotoxicol 5:227–234.
    6.
    Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. 2010. Selective IgA deficiency in children in Israel. J Clin Immunol 30:761–765.
    7.
    Woof JM, Kerr MA. 2006. The function of immunoglobulin A in immunity. J Pathol 208:270–282.
    8.
    Bakema JE, van Egmond M. 2011. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 4:612–624.
    9.
    Su F, Patel GB, Hu S, Chen W. 2016. Induction of mucosal immunity through systemic immunization: phantom or reality? Hum Vaccin Immunother 12:1070–1079.
    10.
    Takamatsu Y, Imai M, Maeda K, Nakajima N, Higashi-Kuwata N, Iwatsuki-Horimoto K, Ito M, Kiso M, Maemura T, Takeda Y, Omata K, Suzuki T, Kawaoka Y, Mitsuya H. 2022. Highly neutralizing COVID-19 convalescent plasmas potently block SARS-CoV-2 replication and pneumonia in Syrian hamsters. J Virol 96:e0155121.
    11.
    Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claër L, Quentric P, Fadlallah J, Devilliers H, Ghillani P, Gunn C, Hockett R, Mudumba S, Guihot A, Luyt C-E, Mayaux J, Beurton A, Fourati S, Bruel T, Schwartz O, Lacorte J-M, Yssel H, Parizot C, Dorgham K, Charneau P, Amoura Z, Gorochov G. 2021. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med 13:eabd2223.
    12.
    Wisnewski AV, Campillo Luna J, Redlich CA. 2021. Human IgG and IgA responses to COVID-19 mRNA vaccines. PLoS One 16:e0249499.
    13.
    Zurac S, Nichita L, Mateescu B, Mogodici C, Bastian A, Popp C, Cioplea M, Socoliu C, Constantin C, Neagu M. 2021. COVID-19 vaccination and IgG and IgA antibody dynamics in healthcare workers. Mol Med Rep 24:578.
    14.
    Azzi L, Dalla Gasperina D, Veronesi G, Shallak M, Ietto G, Iovino D, Baj A, Gianfagna F, Maurino V, Focosi D, Maggi F, Ferrario MM, Dentali F, Carcano G, Tagliabue A, Maffioli LS, Accolla RS, Forlani G. 2022. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine 75:103788.
    15.
    WHO Solidarity Trial Consortium. 2021. Repurposed antiviral drugs for Covid-19: interim WHO Solidarity Trial results. N Engl J Med 384:497–511.
    16.
    Maeda K, Higashi-Kuwata N, Kinoshita N, Kutsuna S, Tsuchiya K, Hattori S-I, Matsuda K, Takamatsu Y, Gatanaga H, Oka S, Sugiyama H, Ohmagari N, Mitsuya H. 2021. Neutralization of SARS-CoV-2 with IgG from COVID-19-convalescent plasma. Sci Rep 11:5563.
    17.
    Wood SN. 2017. Generalized additive models: an introduction with R, 2nd ed Chapman and Hall/CRC, New York, NY.
    18.
    van den Hoogen LL, Verheul MK, Vos ERA, van Hagen CCE, van Boven M, Wong D, Wijmenga-Monsuur AJ, Smits G, Kuijer M, van Rooijen D, Bogaard-van Maurik M, Zutt I, van Vliet J, Wolf J, van der Klis FRM, de Melker HE, van Binnendijk RS, den Hartog G. 2022. SARS-CoV-2 Spike S1-specific IgG kinetic profiles following mRNA or vector-based vaccination in the general Dutch population show distinct kinetics. Sci Rep 12:5935.
    19.
    Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Viant C, Gaebler C, Cipolla M, Hoffmann H-H, Oliveira TY, Oren DA, Ramos V, Nogueira L, Michailidis E, Robbiani DF, Gazumyan A, Rice CM, Hatziioannou T, Bieniasz PD, Caskey M, Nussenzweig MC. 2021. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med 13:eabf1555.
    20.
    Maeda K, Amano M, Uemura Y, Tsuchiya K, Matsushima T, Noda K, Shimizu Y, Fujiwara A, Takamatsu Y, Ichikawa Y, Nishimura H, Kinoshita M, Matsumoto S, Gatanaga H, Yoshimura K, Oka S-I, Mikami A, Sugiura W, Sato T, Yoshida T, Shimada S, Mitsuya H. 2021. Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Sci Rep 11:22848.
    21.
    Mazzoni A, Di Lauria N, Maggi L, Salvati L, Vanni A, Capone M, Lamacchia G, Mantengoli E, Spinicci M, Zammarchi L, Kiros SK, Rocca A, Lagi F, Colao MG, Parronchi P, Scaletti C, Turco L, Liotta F, Rossolini GM, Cosmi L, Bartoloni A, Annunziato F, COVID-19 Research Group. 2021. First-dose mRNA vaccination is sufficient to reactivate immunological memory to SARS-CoV-2 in subjects who have recovered from COVID-19. J Clin Invest 131:e149150.
    22.
    Anderson M, Stec M, Rewane A, Landay A, Cloherty G, Moy J. 2021. SARS-CoV-2 antibody responses in infection-naive or previously infected individuals After 1 and 2 doses of the BNT162b2 vaccine. JAMA Netw Open 4:e2119741.
    23.
    Reynolds HY. 1988. Immunoglobulin G and its function in the human respiratory tract. Mayo Clin Proc 63:161–174.
    24.
    Krammer F. 2019. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol 19:383–397.
    25.
    Pakkanen SH, Kantele JM, Moldoveanu Z, Hedges S, Häkkinen M, Mestecky J, Kantele A. 2010. Expression of homing receptors on IgA1 and IgA2 plasmablasts in blood reflects differential distribution of IgA1 and IgA2 in various body fluids. Clin Vaccine Immunol 17:393–401.
    26.
    Amanna IJ, Carlson NE, Slifka MK. 2007. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med 357:1903–1915.
    27.
    Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. 2020. Seasonal coronavirus protective immunity is short-lasting. Nat Med 26:1691–1693.
    28.
    Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, Borgert BA, Moreno CA, Solomon BD, Trimmer-Smith L, Etienne V, Rodriguez-Barraquer I, Lessler J, Salje H, Burke DS, Wesolowski A, Cummings DAT. 2020. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun 11:4704.
    29.
    Vanshylla K, Di Cristanziano V, Kleipass F, Dewald F, Schommers P, Gieselmann L, Gruell H, Schlotz M, Ercanoglu MS, Stumpf R, Mayer P, Zehner M, Heger E, Johannis W, Horn C, Suárez I, Jung N, Salomon S, Eberhardt KA, Gathof B, Fätkenheuer G, Pfeifer N, Eggeling R, Augustin M, Lehmann C, Klein F. 2021. Kinetics and correlates of the neutralizing antibody response to SARS-CoV-2 infection in humans. Cell Host Microbe 29:917–929.e4.
    30.
    Iyer AS, Jones FK, Nodoushani A, Kelly M, Becker M, Slater D, Mills R, Teng E, Kamruzzaman M, Garcia-Beltran WF, Astudillo M, Yang D, Miller TE, Oliver E, Fischinger S, Atyeo C, Iafrate AJ, Calderwood SB, Lauer SA, Yu J, Li Z, Feldman J, Hauser BM, Caradonna TM, Branda JA, Turbett SE, LaRocque RC, Mellon G, Barouch DH, Schmidt AG, Azman AS, Alter G, Ryan ET, Harris JB, Charles RC. 2020. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol 5:eabe0367.
    31.
    Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi P-Y, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. 2020. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med 383:2439–2450.
    32.
    Ebinger JE, Fert-Bober J, Printsev I, Wu M, Sun N, Prostko JC, Frias EC, Stewart JL, Van Eyk JE, Braun JG, Cheng S, Sobhani K. 2021. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat Med 27:981–984.
    33.
    Havervall S, Marking U, Greilert-Norin N, Ng H, Gordon M, Salomonsson A-C, Hellström C, Pin E, Blom K, Mangsbo S, Phillipson M, Klingström J, Hober S, Nilsson P, Åberg M, Thålin C. 2021. Antibody responses after a single dose of ChAdOx1 nCoV-19 vaccine in healthcare workers previously infected with SARS-CoV-2. EBioMedicine 70:103523.
    34.
    Angyal A, Longet S, Moore SC, Payne RP, Harding A, Tipton T, Rongkard P, Ali M, Hering LM, Meardon N, Austin J, Brown R, Skelly D, Gillson N, Dobson SL, Cross A, Sandhar G, Kilby JA, Tyerman JK, Nicols AR, Spegarova JS, Mehta H, Hornsby H, Whitham R, Conlon CP, Jeffery K, Goulder P, Frater J, Dold C, Pace M, Ogbe A, Brown H, Ansari MA, Adland E, Brown A, Chand M, Shields A, Matthews PC, Hopkins S, Hall V, James W, Rowland-Jones SL, Klenerman P, Dunachie S, Richter A, Duncan CJA, Barnes E, Carroll M, Turtle L, de Silva TI, et al. 2022. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe 3:e21–e31.
    35.
    Pisil Y, Yazici Z, Shida H, Miura T. 2021. Is SARS-CoV-2 neutralized more effectively by IgM and IgA than IgG having the same Fab region? Pathogens 10:751.
    36.
    Quinti I, Mortari EP, Fernandez SA, Milito C, Carsetti R. 2021. IgA antibodies and IgA deficiency in SARS-CoV-2 infection. Front Cell Infect Microbiol 11:655896.
    37.
    Çölkesen F, Kandemir B, Arslan Ş, Çölkesen F, Yıldız E, Korkmaz C, Vatansev H, Evcen R, Aykan FS, Kılınç M, Aytekin G, Feyzioğlu B, Doğan M, Teke T. 2022. Relationship between selective IgA deficiency and COVID-19 prognosis. Jpn J Infect Dis 75:228–233.
    38.
    Ma H, Zeng W, He H, Zhao D, Jiang D, Zhou P, Cheng L, Li Y, Ma X, Jin T. 2020. Serum IgA, IgM, and IgG responses in COVID-19. Cell Mol Immunol 17:773–775.
    39.
    Marot S, Malet I, Leducq V, Zafilaza K, Sterlin D, Planas D, Gothland A, Jary A, Dorgham K, Bruel T, Burrel S, Boutolleau D, Schwartz O, Gorochov G, Calvez V, Marcelin A-G, Sorbonne Université SARS-CoV-2 Neutralizing Antibodies Study Group. 2021. Rapid decline of neutralizing antibodies against SARS-CoV-2 among infected healthcare workers. Nat Commun 12:844.
    40.
    Planchais C, Fernández I, Bruel T, de Melo GD, Prot M, Beretta M, Guardado-Calvo P, Dufloo J, Molinos-Albert LM, Backovic M, Chiaravalli J, Giraud E, Vesin B, Conquet L, Grzelak L, Planas D, Staropoli I, Guivel-Benhassine F, Hieu T, Boullé M, Cervantes-Gonzalez M, Ungeheuer M-N, Charneau P, van der Werf S, Agou F, Dimitrov JD, Simon-Lorière E, Bourhy H, Montagutelli X, Rey FA, Schwartz O, Mouquet H, French COVID Cohort Study Group, CORSER Study Group. 2022. Potent human broadly SARS-CoV-2-neutralizing IgA and IgG antibodies effective against Omicron BA.1 and BA.2. J Exp Med 219:e20220638.
    41.
    Lafon E, Jäger M, Bauer A, Reindl M, Bellmann-Weiler R, Wilflingseder D, Lass-Flörl C, Posch W. 2022. Comparative analyses of IgG/IgA neutralizing effects induced by three COVID-19 vaccines against variants of concern. J Allergy Clin Immunol 149:1242–1252.e12.
    42.
    Adjobimey T, Meyer J, Sollberg L, Bawolt M, Berens C, Kovačević P, Trudić A, Parcina M, Hoerauf A. 2022. Comparison of IgA, IgG, and neutralizing antibody responses following immunization with Moderna, BioNTech, AstraZeneca, Sputnik-V, Johnson and Johnson, and Sinopharm’s COVID-19 vaccines. Front Immunol 13:917905.
    43.
    Terada M, Kutsuna S, Togano T, Saito S, Kinoshita N, Shimanishi Y, Suzuki T, Miyazato Y, Inada M, Nakamoto T, Nomoto H, Ide S, Sato M, Maeda K, Matsunaga A, Satake M, Matsubayashi K, Tsuno H, Kojima M, Kuramistu M, Tezuka K, Ikebe E, Okuma K, Hamaguchi I, Shiratori K, Sato M, Kawakami Y, Inaba K, Igarashi S, Yamauchi R, Matsumura M, Ishimaru K, Zhang B, Kuge C, Ishihara M, Gouda M, Tanaka K, Ishizaka Y, Ohmagari N. 2021. How we secured a COVID-19 convalescent plasma procurement scheme in Japan. Transfusion 61:1998–2007.
    44.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.
    45.
    Bakdash JZ, Marusich LR. 2017. Repeated measures correlation. Front Psychol 8:456.
    46.
    Bakdash JZ, Marusich LR. 2022. rmcorr: repeated measures correlation. https://CRAN.R-project.org/package=rmcorr.
    47.
    R Core Team. 2022. The R project for statistical computing. https://www.R-project.org/.

    Information & Contributors

    Information

    Published In

    Microbiology Spectrum
    Online First
    eLocator: e02716-22
    Editor: Takamasa Ueno, Kumamoto University
    PubMed: 36219096

    History

    Received: 15 July 2022
    Accepted: 13 September 2022
    Published online: 11 October 2022

    Peer Review History

    Download review history as PDF.

    Permissions

    Request permissions for this article.

    Keywords

    1. COVID-19
    2. SARS-CoV-2
    3. humoral immunity
    4. neutralizing antibodies
    5. immunoglobulin A
    6. immunoglobulin G
    7. anti-SARS-CoV-2 immunoglobulin
    8. COVID-19 mRNA vaccine

    Contributors

    Authors

    Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
    Kazumi Omata
    Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
    Yosuke Shimizu
    Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
    Noriko Kinoshita-Iwamoto
    Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
    Mari Terada
    Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
    Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
    Tetsuya Suzuki
    Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
    Shinichiro Morioka
    Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
    Yukari Uemura
    Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
    Norio Ohmagari
    Disease Control and Prevention Center, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
    Kenji Maeda
    Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
    Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
    Experimental Retrovirology Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
    Department of Clinical Sciences, Kumamoto University School of Medicine, Kumamoto, Japan

    Editor

    Takamasa Ueno
    Editor
    Kumamoto University

    Notes

    The authors declare no conflict of interest.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share

  • J VirolArticle
    Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike

    ABSTRACT

    Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity.
    IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.

    REFERENCES

    1.
    Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. 2020. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581:215–220.
    2.
    Iacobucci G. 2021. Covid-19: New UK variant may be linked to increased death rate, early data indicate. BMJ 372:n230.
    3.
    Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, Mlisana K, von Gottberg A, Walaza S, Allam M, Ismail A, Mohale T, Glass AJ, Engelbrecht S, Van Zyl G, Preiser W, Petruccione F, Sigal A, Hardie D, Marais G, Hsiao NY, Korsman S, Davies MA, Tyers L, Mudau I, York D, Maslo C, Goedhals D, Abrahams S, Laguda-Akingba O, Alisoltani-Dehkordi A, Godzik A, Wibmer CK, Sewell BT, Lourenço J, Alcantara LCJ, Kosakovsky Pond SL, Weaver S, Martin D, Lessells RJ, Bhiman JN, Williamson C, de Oliveira T. 2021. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature 592:438–443.
    4.
    Voloch CM, Silva F, de Almeida LGP, Cardoso CC, Brustolini OJ, Gerber AL, Guimarães A, Mariani D, Costa R, Ferreira OC, Cavalcanti AC, Frauches TS, de Mello CMB, Galliez RM, Faffe DS, Castiñeiras TMPP, Tanuri A, de Vasconcelos ATR. 2020. Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. medRxiv. https://www.medrxiv.org/content/10.1101/2020.12.23.20248598v1.
    5.
    Mlcochova P, Kemp SA, Dhar MS, Papa G, Meng B, Ferreira IATM, Datir R, Collier DA, Albecka A, Singh S, Pandey R, Brown J, Zhou J, Goonawardane N, Mishra S, Whittaker C, Mellan T, Marwal R, Datta M, Sengupta S, Ponnusamy K, Radhakrishnan VS, Abdullahi A, Charles O, Chattopadhyay P, Devi P, Caputo D, Peacock T, Wattal C, Goel N, Satwik A, Vaishya R, Agarwal M, Mavousian A, Lee JH, Bassi J, Silacci-Fegni C, Saliba C, Pinto D, Irie T, Yoshida I, Hamilton WL, Sato K, Bhatt S, Flaxman S, James LC, Corti D, Piccoli L, Barclay WS, Rakshit P, CITIID-NIHR BioResource COVID-19 Collaboration, et al. 2021. SARS-CoV-2 B.1.617.2 delta variant replication and immune evasion. Nature 599:114–119.
    6.
    Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber PP, Fatihi S, Rathore S, Zepeda SK, Papa G, Kemp SA, Ikeda T, Toyoda M, Tan TS, Kuramochi J, Mitsunaga S, Ueno T, Shirakawa K, Takaori-Kondo A, Brevini T, Mallery DL, Charles OJ, Baker S, Dougan G, Hess C, Kingston N, Lehner PJ, Lyons PA, Matheson NJ, Ouwehand WH, Saunders C, Summers C, Thaventhiran JED, Toshner M, Weekes MP, Maxwell P, Shaw A, Bucke A, Calder J, Canna L, Domingo J, Elmer A, Fuller S, Harris J, Hewitt S, Kennet J, Jose S, Kourampa J, The CITIID-NIHR BioResource COVID-19 Collaboration., et al. 2022. Altered TMPRSS2 usage by SARS-CoV-2 omicron impacts tropism and fusogenicity. Nature 603:706–714.
    7.
    Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, Sledneva Y, Choudhury D, Maslova I, Deng K, Kutumbaka K, Geng H, Fowler C, Greene D, Ralston J, Samadpour M, Sokurenko E. 2021. Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants. J Clin Microbiol 59:e00921-21.
    8.
    Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK, Sotomayor-González A, Glasner DR, Reyes KR, Gliwa AS, Reddy NP, Sanchez San Martin C, Federman S, Cheng J, Balcerek J, Taylor J, Streithorst JA, Miller S, Sreekumar B, Chen P-Y, Schulze-Gahmen U, Taha TY, Hayashi JM, Simoneau CR, Kumar GR, McMahon S, Lidsky PV, Xiao Y, Hemarajata P, Green NM, Espinosa A, Kath C, Haw M, Bell J, Hacker JK, Hanson C, Wadford DA, Anaya C, Ferguson D, Frankino PA, Shivram H, Lareau LF, Wyman SK, Ott M, Andino R, Chiu CY. 2021. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184:3426–3437.e8.
    9.
    Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E. 2021. Emergence of a novel SARS-CoV-2 variant in southern California. JAMA 325:1324–1326.
    10.
    Lu L, Sikkema RS, Velkers FC, Nieuwenhuijse DF, Fischer EAJ, Meijer PA, Bouwmeester-Vincken N, Rietveld A, Wegdam-Blans MCA, Tolsma P, Koppelman M, Smit LAM, Hakze-van der Honing RW, van der Poel WHM, van der Spek AN, Spierenburg MAH, Molenaar RJ, Rond J, Augustijn M, Woolhouse M, Stegeman JA, Lycett S, Oude Munnink BB, Koopmans MPG. 2021. Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands. Nat Commun 12:6802.
    11.
    Munnink BBO, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Honing RH-v, Wegdam-Blans MCA, Bouwstra RJ, GeurtsvanKessel C, Eijk A, Velkers FC, Smit LAM, Stegeman A, Poel W, Koopmans MPG. 2021. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–177.
    12.
    Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H, Hofmann-Winkler H, Kempf A, Nessler S, Riggert J, Winkler MS, Schulz S, Jäck HM, Pöhlmann S. 2021. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep 35:109017.
    13.
    Kimura I, Kosugi Y, Wu J, Zahradnik J, Yamasoba D, Butlertanaka EP, Tanaka YL, Uriu K, Liu Y, Morizako N, Shirakawa K, Kazuma Y, Nomura R, Horisawa Y, Tokunaga K, Ueno T, Takaori-Kondo A, Schreiber G, Arase H, Motozono C, Saito A, Nakagawa S, Sato K. 2022. The SARS-CoV-2 lambda variant exhibits enhanced infectivity and immune resistance. Cell Rep 38:110218.
    14.
    McCallum M, Walls AC, Sprouse KR, Bowen JE, Rosen LE, Dang HV, Marco AD, Franko N, Tilles SW, Logue J, Miranda MC, Ahlrichs M, Carter L, Snell G, Pizzuto MS, Chu HY, Voorhis WCV, Corti D, Veesler D. 2021. Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants. Science 374:1621–1626.
    15.
    Kaleta T, Kern L, Hong SL, Hölzer M, Kochs G, Beer J, Schnepf D, Schwemmle M, Bollen N, Kolb P, Huber M, Ulferts S, Weigang S, Dudas G, Wittig A, Jaki L, Padane A, Lagare A, Salou M, Ozer EA, Nnaemeka N, Odoom JK, Rutayisire R, Benkahla A, Akoua-Koffi C, Ouedraogo A-S, Simon-Lorière E, Enouf V, Kröger S, Calvignac-Spencer S, Baele G, Panning M, Fuchs J. 2022. Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nat Commun 13:1152.
    16.
    Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, Prot M, Gallais F, Gantner P, Velay A, Le Guen J, Kassis-Chikhani N, Edriss D, Belec L, Seve A, Courtellemont L, Péré H, Hocqueloux L, Fafi-Kremer S, Prazuck T, Mouquet H, Bruel T, Simon-Lorière E, Rey FA, Schwartz O. 2021. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596:276–280.
    17.
    Shen X, Tang H, Pajon R, Smith G, Glenn GM, Shi W, Korber B, Montefiori DC. 2021. Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351. N Engl J Med 384:2352–2354.
    18.
    Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR. 2021. Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera. iScience 24:103341.
    19.
    Li Q, Wu J, Nie J, Zhang L, Hao H, Liu S, Zhao C, Zhang Q, Liu H, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Zhang L, Li X, Huang W, Wang Y. 2020. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 182:1284–1294.e9.
    20.
    Gao A, Chen Z, Amitai A, Doelger J, Mallajosyula V, Sundquist E, Pereyra Segal F, Carrington M, Davis MM, Streeck H, Chakraborty AK, Julg B. 2021. Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-CoV-2. iScience 24:102311.
    21.
    Kared H, Redd AD, Bloch EM, Bonny TS, Sumatoh H, Kairi F, Carbajo D, Abel B, Newell EW, Bettinotti MP, Benner SE, Patel EU, Littlefield K, Laeyendecker O, Shoham S, Sullivan D, Casadevall A, Pekosz A, Nardin A, Fehlings M, Tobian AA, Quinn TC. 2021. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. J Clin Invest 131:e145476.
    22.
    Hu C, Shen M, Han X, Chen Q, Li L, Chen S, Zhang J, Gao F, Wang W, Wang Y, Li T, Li S, Huang J, Wang J, Zhu J, Chen D, Wu Q, Tao K, Pang D, Jin A. 2022. Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants. Genes Dis 9:216–229.
    23.
    Motozono C, Toyoda M, Zahradnik J, Saito A, Nasser H, Tan TS, Ngare I, Kimura I, Uriu K, Kosugi Y, Yue Y, Shimizu R, Ito J, Torii S, Yonekawa A, Shimono N, Nagasaki Y, Minami R, Toya T, Sekiya N, Fukuhara T, Matsuura Y, Schreiber G, Ikeda T, Nakagawa S, Ueno T, Sato K, Genotype to Phenotype Japan (G2P-Japan) Consortium. 2021. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe 29:1124–1136.e11.
    24.
    Zhou Z, Du P, Yu M, Baptista-Hon DT, Miao M, Xiang AP, Lau JY-N, Li N, Xiong X, Huang H, Liu Z, Dai Q, Zhu J, Wu S, Li G, Zhang K, Group C-II, COVID-19 Immunity Investigation Group. 2021. Assessment of infectivity and the impact on neutralizing activity of immune sera of the COVID-19 variant, CAL.20C. Signal Transduction and Targeted Therapy 6:285.
    25.
    Vargas-Herrera N, Araujo-Castillo RV, Mestanza O, Galarza M, Rojas-Serrano N, Solari-Zerpa L. 2022. SARS-CoV-2 Lambda and Gamma variants competition in Peru, a country with high seroprevalence. Lancet Reg Health Am 6:100112.
    26.
    World Health Organization. 2022. Tracking SARS-CoV-2 variants. World Health Organization, Geneva, Switzerland.
    27.
    Cao Y, Yisimayi A, Jian F, Song W, Xiao T, Wang L, Du S, Wang J, Li Q, Chen X, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z, Wang Y, Wang X, Xiao J, Xie XS. 2022. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv. https://www.biorxiv.org/content/10.1101/2022.04.30.489997v2.
    28.
    Hou W. 2020. Characterization of codon usage pattern in SARS-CoV-2. Virol J 17:138.
    29.
    Balasco N, Damaggio G, Esposito L, Villani F, Berisio R, Colonna V, Vitagliano L. 2021. A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion. Sci Rep 11:24495.
    30.
    Morgan AA, Rubenstein E. 2013. Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS One 8:e53785.
    31.
    Wedemeyer WJ, Welker E, Narayan M, Scheraga HA. 2000. Disulfide bonds and protein folding. Biochemistry 39:4207–4216.
    32.
    Bass J, Turck C, Rouard M, Steiner DF. 2000. Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors. Proc Natl Acad Sci USA 97:11905–11909.
    33.
    Ozono S, Zhang Y, Ode H, Sano K, Tan TS, Imai K, Miyoshi K, Kishigami S, Ueno T, Iwatani Y, Suzuki T, Tokunaga K. 2021. SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat Commun 12:848.
    34.
    Pal D. 2021. Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity. J Struct Biol 213:107713.
    35.
    Teeranaipong P, Hosoya N, Kawana-Tachikawa A, Fujii T, Koibuchi T, Nakamura H, Koga M, Kondo N, Gao GF, Hoshino H, Matsuda Z, Iwamoto A. 2013. Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay. J Int AIDS Soc 16:18723–18723.
    36.
    Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM, Walsh RM, Rits-Volloch S, Zhu H, Woosley AN, Yang W, Sliz P, Chen B. 2021. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science 372:525–530.
    37.
    Wang Y, Liu C, Zhang C, Wang Y, Hong Q, Xu S, Li Z, Yang Y, Huang Z, Cong Y. 2022. Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies. Nat Commun 13:871.
    38.
    Wang M, Zhang L, Li Q, Wang B, Liang Z, Sun Y, Nie J, Wu J, Su X, Qu X, Y L, Wang Y, Huang W. 2022. Reduced sensitivity of the SARS-CoV-2 Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination. Emerg Microbes Infect 11:18–29.
    39.
    Yamasoba D, Kimura I, Nasser H, Morioka Y, Nao N, Ito J, Uriu K, Tsuda M, Zahradnik J, Shirakawa K, Suzuki R, Kishimoto M, Kosugi Y, Kobiyama K, Hara T, Toyoda M, Tanaka YL, Butlertanaka EP, Shimizu R, Ito H, Wang L, Oda Y, Orba Y, Sasaki M, Nagata K, Yoshimatsu K, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Kuramochi J, Seki M, Fujiki R, Kaneda A, Shimada T, Nakada T-a, Sakao S, Suzuki T, Ueno T, Takaori-Kondo A, Ishii KJ, Schreiber G, Sawa H, Saito A, Irie T, Tanaka S, Matsuno K, Fukuhara T, Ikeda T, Sato K. 2022. Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike. Cell 185:2103–2115.
    40.
    Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. 2020. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet 65:569–575.
    41.
    Mahiti M, Toyoda M, Jia X, Kuang XT, Mwimanzi F, Mwimanzi P, Walker BD, Xiong Y, Brumme ZL, Brockman MA, Ueno T. 2016. Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences. mBio 7:e01516-15–e01515.
    42.
    Ode H, Nakata Y, Nagashima M, Hayashi M, Yamazaki T, Asakura H, Suzuki J, Kubota M, Matsuoka K, Matsuda M, Mori M, Sugimoto A, Imahashi M, Yokomaku Y, Sadamasu K, Iwatani Y. 2022. Molecular epidemiological features of SARS-CoV-2 in Japan. Virus Evol 8:veac034.
    43.
    Price MN, Dehal PS, Arkin AP. 2010. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS One 5:e0009490.
    44.
    Niwa H, Yamamura K, Miyazaki J. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199.
    45.
    Ozono S, Zhang Y, Tobiume M, Kishigami S, Tokunaga K. 2020. Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag. J Biol Chem 295:13023–13030.
    46.
    Ikeda T, Symeonides M, Albin JS, Li M, Thali M, Harris RS. 2018. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G. PLoS Pathog 14:e1007010.
    47.
    Kondo N, Miyauchi K, Matsuda Z. 2011. Monitoring viral-mediated membrane fusion using fluorescent reporter methods. Curr Protoc Cell Biol Chapter 26:Unit 26.9.
    48.
    Tan TS, Toyoda M, Tokunaga K, Ueno T. 2021. Aromatic side chain at position 412 of SERINC5 exerts restriction activity toward HIV-1 and other retroviruses. J Virol 95:e00634-21.
    49.
    Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675.
    50.
    Motozono C, Toyoda M, Tan TS, Hamana H, Goto Y, Aritsu Y, Miyashita Y, Oshiumi H, Nakamura K, Okada S, Udaka K, Kitamatsu M, Kishi H, Ueno T. 2022. The SARS-CoV-2 Omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition. Nat Commun 13:5440.

    Information & Contributors

    Information

    Published In

    Journal of Virology
    Volume 96Number 2026 October 2022
    eLocator: e01162-22
    Editor: Mark T. Heise, University of North Carolina at Chapel Hill
    PubMed: 36214577

    History

    Received: 29 July 2022
    Accepted: 25 September 2022
    Published online: 10 October 2022

    Permissions

    Request permissions for this article.

    Keywords

    1. SARS-CoV-2
    2. L452
    3. spike
    4. substitution
    5. fitness
    6. coronavirus
    7. mutational studies
    8. spike protein

    Contributors

    Authors

    Toong Seng Tan
    Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
    Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
    Mako Toyoda
    Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
    Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
    Hirotaka Ode
    Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
    Godfrey Barabona
    Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
    Hiroshi Hamana
    Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
    Mizuki Kitamatsu
    Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka, Japan
    Hiroyuki Kishi
    Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
    Chihiro Motozono
    Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
    Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
    Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
    Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
    Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

    Editor

    Mark T. Heise
    Editor
    University of North Carolina at Chapel Hill

    Notes

    The authors declare no conflict of interest.

    Metrics & Citations

    Metrics

    Citations

    View Options

    Figures and Media

    Figures

    Media

    Tables

    Share